Dynamic Adaptation of LoRA Fine-Tuning for Efficient and Task-Specific Optimization of Large Language Models
- URL: http://arxiv.org/abs/2501.14859v1
- Date: Fri, 24 Jan 2025 18:54:14 GMT
- Title: Dynamic Adaptation of LoRA Fine-Tuning for Efficient and Task-Specific Optimization of Large Language Models
- Authors: Xiaoxuan Liao, Chihang Wang, Shicheng Zhou, Jiacheng Hu, Hongye Zheng, Jia Gao,
- Abstract summary: This paper presents a novel methodology of fine-tuning for large language models-dynamic LoRA.
It adds dynamic adaptation mechanisms to improve efficiency and performance.
The efficiency of the dynamic LoRA was validated in experiments on benchmark datasets.
- Score: 0.7421845364041001
- License:
- Abstract: This paper presents a novel methodology of fine-tuning for large language models-dynamic LoRA. Building from the standard Low-Rank Adaptation framework, this methodology further adds dynamic adaptation mechanisms to improve efficiency and performance. The key contribution of dynamic LoRA lies within its adaptive weight allocation mechanism coupled with an input feature-based adaptive strategy. These enhancements allow for a more precise fine-tuning process that is more tailored to specific tasks. Traditional LoRA methods use static adapter settings, not considering the different importance of model layers. In contrast, dynamic LoRA introduces a mechanism that dynamically evaluates the layer's importance during fine-tuning. This evaluation enables the reallocation of adapter parameters to fit the unique demands of each individual task, which leads to better optimization results. Another gain in flexibility arises from the consideration of the input feature distribution, which helps the model generalize better when faced with complicated and diverse datasets. The joint approach boosts not only the performance over each single task but also the generalization ability of the model. The efficiency of the dynamic LoRA was validated in experiments on benchmark datasets, such as GLUE, with surprising results. More specifically, this method achieved 88.1% accuracy with an F1-score of 87.3%. Noticeably, these improvements were made at a slight increase in computational costs: only 0.1% more resources than standard LoRA. This balance between performance and efficiency positions dynamic LoRA as a practical, scalable solution for fine-tuning LLMs, especially in resource-constrained scenarios. To take it a step further, its adaptability makes it a promising foundation for much more advanced applications, including multimodal tasks.
Related papers
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation [32.369133126167085]
We propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA.
At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning.
Our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
arXiv Detail & Related papers (2025-02-13T02:41:34Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)
RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.
RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - ASLoRA: Adaptive Sharing Low-Rank Adaptation Across Layers [37.77593687901923]
ASLoRA is a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing.
We conduct experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters.
arXiv Detail & Related papers (2024-12-13T13:32:13Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.
Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.
We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models [7.926974917872204]
LoRA-SP is a novel approach utilizing randomized half-selective parameter freezing.
LoRA-SP significantly reduces computational and memory requirements without compromising model performance.
arXiv Detail & Related papers (2024-02-28T06:50:10Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - One-for-All: Generalized LoRA for Parameter-Efficient Fine-tuning [34.109808214968176]
Generalized LoRA (GLoRA) is an advanced approach for universal parameter-efficient fine-tuning tasks.
It employs a generalized prompt module to optimize pre-trained model weights and adjust intermediate activations.
GLoRA exhibits strong transfer learning, few-shot learning and domain generalization abilities.
arXiv Detail & Related papers (2023-06-13T17:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.