LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models
- URL: http://arxiv.org/abs/2403.08822v1
- Date: Wed, 28 Feb 2024 06:50:10 GMT
- Title: LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models
- Authors: Yichao Wu, Yafei Xiang, Shuning Huo, Yulu Gong, Penghao Liang,
- Abstract summary: LoRA-SP is a novel approach utilizing randomized half-selective parameter freezing.
LoRA-SP significantly reduces computational and memory requirements without compromising model performance.
- Score: 7.926974917872204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In addressing the computational and memory demands of fine-tuning Large Language Models(LLMs), we propose LoRA-SP(Streamlined Partial Parameter Adaptation), a novel approach utilizing randomized half-selective parameter freezing within the Low-Rank Adaptation(LoRA)framework. This method efficiently balances pre-trained knowledge retention and adaptability for task-specific optimizations. Through a randomized mechanism, LoRA-SP determines which parameters to update or freeze, significantly reducing computational and memory requirements without compromising model performance. We evaluated LoRA-SP across several benchmark NLP tasks, demonstrating its ability to achieve competitive performance with substantially lower resource consumption compared to traditional full-parameter fine-tuning and other parameter-efficient techniques. LoRA-SP innovative approach not only facilitates the deployment of advanced NLP models in resource-limited settings but also opens new research avenues into effective and efficient model adaptation strategies.
Related papers
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)
Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.
We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach [10.980433187379868]
Low-Rank Adaptation (LoRA) has been developed to reduce resource consumption while maintaining satisfactory fine-tuning results.
This paper investigates the intrinsic dimension of the matrix updates approximated by the LoRA method and reveals the performance benefits of increasing this intrinsic dimension.
arXiv Detail & Related papers (2024-07-16T15:26:31Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
Partially Rotation-enhanced Low-Rank Adaptation (PRoLoRA) is an intra-layer sharing mechanism.
PRoLoRA retains its advantages, and effectively circumvents the drawbacks of peer parameter-sharing methods.
Empirical experiments demonstrate the remarkably higher parameter efficiency of PRoLoRA.
arXiv Detail & Related papers (2024-02-24T13:39:05Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.