Glissando-Net: Deep sinGLe vIew category level poSe eStimation ANd 3D recOnstruction
- URL: http://arxiv.org/abs/2501.14896v1
- Date: Fri, 24 Jan 2025 19:39:15 GMT
- Title: Glissando-Net: Deep sinGLe vIew category level poSe eStimation ANd 3D recOnstruction
- Authors: Bo Sun, Hao Kang, Li Guan, Haoxiang Li, Philippos Mordohai, Gang Hua,
- Abstract summary: We present a deep learning model, dubbed Glissando-Net, to simultaneously estimate the pose and reconstruct the 3D shape of objects.
Glissando-Net is composed of two auto-encoders that are jointly trained.
- Score: 23.243959739520427
- License:
- Abstract: We present a deep learning model, dubbed Glissando-Net, to simultaneously estimate the pose and reconstruct the 3D shape of objects at the category level from a single RGB image. Previous works predominantly focused on either estimating poses(often at the instance level), or reconstructing shapes, but not both. Glissando-Net is composed of two auto-encoders that are jointly trained, one for RGB images and the other for point clouds. We embrace two key design choices in Glissando-Net to achieve a more accurate prediction of the 3D shape and pose of the object given a single RGB image as input. First, we augment the feature maps of the point cloud encoder and decoder with transformed feature maps from the image decoder, enabling effective 2D-3D interaction in both training and prediction. Second, we predict both the 3D shape and pose of the object in the decoder stage. This way, we better utilize the information in the 3D point clouds presented only in the training stage to train the network for more accurate prediction. We jointly train the two encoder-decoders for RGB and point cloud data to learn how to pass latent features to the point cloud decoder during inference. In testing, the encoder of the 3D point cloud is discarded. The design of Glissando-Net is inspired by codeSLAM. Unlike codeSLAM, which targets 3D reconstruction of scenes, we focus on pose estimation and shape reconstruction of objects, and directly predict the object pose and a pose invariant 3D reconstruction without the need of the code optimization step. Extensive experiments, involving both ablation studies and comparison with competing methods, demonstrate the efficacy of our proposed method, and compare favorably with the state-of-the-art.
Related papers
- Adapt PointFormer: 3D Point Cloud Analysis via Adapting 2D Visual Transformers [38.08724410736292]
This paper attempts to leverage pre-trained models with 2D prior knowledge to accomplish the tasks for 3D point cloud analysis.
We propose the Adaptive PointFormer (APF), which fine-tunes pre-trained 2D models with only a modest number of parameters to directly process point clouds.
arXiv Detail & Related papers (2024-07-18T06:32:45Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - Leveraging Single-View Images for Unsupervised 3D Point Cloud Completion [53.93172686610741]
Cross-PCC is an unsupervised point cloud completion method without requiring any 3D complete point clouds.
To take advantage of the complementary information from 2D images, we use a single-view RGB image to extract 2D features.
Our method even achieves comparable performance to some supervised methods.
arXiv Detail & Related papers (2022-12-01T15:11:21Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPoint is a simple cross-modal contrastive learning approach to learn transferable 3D point cloud representations.
Our approach outperforms the previous unsupervised learning methods on a diverse range of downstream tasks including 3D object classification and segmentation.
arXiv Detail & Related papers (2022-03-01T18:59:01Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNet is a novel end-to-end deep learning framework for representing 3D point clouds.
It converts an irregular 3D point cloud into a regular 2D color image, named point geometry image (PGI)
In contrast to conventional regular representation modalities based on multi-view projection and voxelization, the proposed representation is differentiable and reversible.
arXiv Detail & Related papers (2020-12-05T13:19:55Z) - From Image Collections to Point Clouds with Self-supervised Shape and
Pose Networks [53.71440550507745]
Reconstructing 3D models from 2D images is one of the fundamental problems in computer vision.
We propose a deep learning technique for 3D object reconstruction from a single image.
We learn both 3D point cloud reconstruction and pose estimation networks in a self-supervised manner.
arXiv Detail & Related papers (2020-05-05T04:25:16Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes [93.82668222075128]
We propose a 3D detection architecture called ImVoteNet for RGB-D scenes.
ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds.
We validate our model on the challenging SUN RGB-D dataset.
arXiv Detail & Related papers (2020-01-29T05:09:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.