論文の概要: VideoPure: Diffusion-based Adversarial Purification for Video Recognition
- arxiv url: http://arxiv.org/abs/2501.14999v1
- Date: Sat, 25 Jan 2025 00:24:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:56:48.740328
- Title: VideoPure: Diffusion-based Adversarial Purification for Video Recognition
- Title(参考訳): VideoPure:ビデオ認識のための拡散型対向浄化
- Authors: Kaixun Jiang, Zhaoyu Chen, Jiyuan Fu, Lingyi Hong, Jinglun Li, Wenqiang Zhang,
- Abstract要約: 本稿では,ビデオ認識モデルの対角的ロバスト性を改善するための拡散型ビデオ浄化フレームワークであるVideoPureを提案する。
我々は、時間的DDIMインバージョンを用いて、入力分布を時間的に一貫したトラジェクトリ定義分布に変換し、より多くのビデオ構造を保ちながら、対向雑音をカバーする。
ベンチマークデータセットやモデルに対するブラックボックス,グレーボックス,アダプティブアタックに対する本手法の防御性能について検討する。
- 参考スコア(独自算出の注目度): 21.317424798634086
- License:
- Abstract: Recent work indicates that video recognition models are vulnerable to adversarial examples, posing a serious security risk to downstream applications. However, current research has primarily focused on adversarial attacks, with limited work exploring defense mechanisms. Furthermore, due to the spatial-temporal complexity of videos, existing video defense methods face issues of high cost, overfitting, and limited defense performance. Recently, diffusion-based adversarial purification methods have achieved robust defense performance in the image domain. However, due to the additional temporal dimension in videos, directly applying these diffusion-based adversarial purification methods to the video domain suffers performance and efficiency degradation. To achieve an efficient and effective video adversarial defense method, we propose the first diffusion-based video purification framework to improve video recognition models' adversarial robustness: VideoPure. Given an adversarial example, we first employ temporal DDIM inversion to transform the input distribution into a temporally consistent and trajectory-defined distribution, covering adversarial noise while preserving more video structure. Then, during DDIM denoising, we leverage intermediate results at each denoising step and conduct guided spatial-temporal optimization, removing adversarial noise while maintaining temporal consistency. Finally, we input the list of optimized intermediate results into the video recognition model for multi-step voting to obtain the predicted class. We investigate the defense performance of our method against black-box, gray-box, and adaptive attacks on benchmark datasets and models. Compared with other adversarial purification methods, our method overall demonstrates better defense performance against different attacks. Our code is available at https://github.com/deep-kaixun/VideoPure.
- Abstract(参考訳): 最近の研究は、ビデオ認識モデルが敵の例に弱いことを示し、下流のアプリケーションに深刻なセキュリティリスクを及ぼすことを示唆している。
しかし、現在の研究は主に敵の攻撃に焦点を当てており、防御機構を探索する作業は限られている。
さらに,ビデオの空間的複雑さのため,既存の防犯手法では高コスト,過度に適合し,防犯性能が制限されている。
近年,拡散型対向浄化法は画像領域における堅牢な防御性能を実現している。
しかし,ビデオ領域における時間次元の増大により,これらの拡散型対向浄化法をビデオ領域に直接適用することは,性能と効率の低下を招いた。
そこで本研究では,ビデオ認識モデルの対角的堅牢性を改善するための拡散型ビデオ浄化フレームワークであるVideoPureを提案する。
対向的な例として、まず時間DDIMインバージョンを用いて、入力分布を時間的に一貫したトラジェクトリ定義分布に変換し、対向雑音をカバーし、より多くのビデオ構造を保存する。
そして,DDIMデノナイジングにおいて,各デノナイジングステップの中間結果を活用し,時間的整合性を維持しながら対向ノイズを除去し,空間的時間的最適化を導出する。
最後に、多段階投票のためのビデオ認識モデルに最適化された中間結果のリストを入力し、予測されたクラスを得る。
ベンチマークデータセットやモデルに対するブラックボックス,グレーボックス,アダプティブアタックに対する本手法の防御性能について検討する。
本手法は,他の敵の浄化方法と比較して,攻撃に対する防御性能が向上することを示す。
私たちのコードはhttps://github.com/deep-kaixun/VideoPure.comで公開されています。
関連論文リスト
- DiffuseDef: Improved Robustness to Adversarial Attacks [38.34642687239535]
敵の攻撃は、事前訓練された言語モデルを使って構築されたシステムにとって重要な課題となる。
本稿では,拡散層をエンコーダと分類器のデノイザとして組み込んだDiffuseDefを提案する。
推測中、敵対的隠蔽状態はまずサンプルノイズと組み合わせられ、次に反復的に復調され、最後にアンサンブルされ、堅牢なテキスト表現が生成される。
論文 参考訳(メタデータ) (2024-06-28T22:36:17Z) - Turns Out I'm Not Real: Towards Robust Detection of AI-Generated Videos [16.34393937800271]
高品質なビデオを作成するための生成モデルは、デジタル整合性とプライバシーの脆弱性に関する懸念を提起している。
ディープフェイクスのビデオと戦うための最近の研究は、ガン生成サンプルを正確に識別する検出器を開発した。
本稿では,複数の最先端(SOTA)生成モデルから合成された映像を検出するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T21:52:49Z) - Inter-frame Accelerate Attack against Video Interpolation Models [73.28751441626754]
我々は,対戦型攻撃をVIFモデルに適用し,対戦型モデルに対して非常に脆弱であることを示す。
本稿では,フレーム間加速攻撃(IAA)と呼ばれる新しい攻撃手法を提案する。
本手法は従来の手法と同等の攻撃性能を達成しつつ,攻撃効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-05-11T03:08:48Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z) - Deep Video Prior for Video Consistency and Propagation [58.250209011891904]
視覚的ビデオの時間的整合性に対する新規で一般的なアプローチを提案する。
提案手法は,大規模なデータセットではなく,オリジナルビデオとプロセッシングビデオのペアでのみ訓練される。
我々は、Deep Video Priorでビデオ上で畳み込みニューラルネットワークをトレーニングすることで、時間的一貫性を実現することができることを示す。
論文 参考訳(メタデータ) (2022-01-27T16:38:52Z) - Temporal Shuffling for Defending Deep Action Recognition Models against
Adversarial Attacks [67.58887471137436]
本研究では,動作認識モデルに対する対人攻撃に対して,入力ビデオの時間的シャッフルを用いた新しい防御手法を開発した。
我々の知る限りでは、これは3D CNNに基づく映像行動認識モデルのための追加トレーニングなしで防御方法を設計する最初の試みである。
論文 参考訳(メタデータ) (2021-12-15T06:57:01Z) - Robust Tracking against Adversarial Attacks [69.59717023941126]
まず,ビデオシーケンス上に敵の例を生成して,敵の攻撃に対するロバスト性を改善する。
提案手法を最先端のディープトラッキングアルゴリズムに適用する。
論文 参考訳(メタデータ) (2020-07-20T08:05:55Z) - Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior [63.11478060678794]
そこで本研究では,前もってモーションアウェアノイズを得るための効果的なモーションエキサイティングサンプリング手法を提案する。
より少ないクエリ数で様々なビデオ分類モデルを攻撃することができる。
論文 参考訳(メタデータ) (2020-03-17T10:54:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。