Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
- URL: http://arxiv.org/abs/2501.15035v1
- Date: Sat, 25 Jan 2025 02:35:48 GMT
- Title: Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
- Authors: Jiazhen Chen, Sichao Fu, Zheng Ma, Mingbin Feng, Tony S. Wirjanto, Qinmu Peng,
- Abstract summary: We propose a novel GAD framework (EL$2$-DGAD) to tackle anomaly detection problem in dynamic graphs with extremely limited labels.
Specifically, a transformer-based graph encoder model is designed to more effectively preserve evolving graph structures beyond the local neighborhood.
- Score: 5.415950005432774
- License:
- Abstract: Semi-supervised graph anomaly detection (GAD) has recently received increasing attention, which aims to distinguish anomalous patterns from graphs under the guidance of a moderate amount of labeled data and a large volume of unlabeled data. Although these proposed semi-supervised GAD methods have achieved great success, their superior performance will be seriously degraded when the provided labels are extremely limited due to some unpredictable factors. Besides, the existing methods primarily focus on anomaly detection in static graphs, and little effort was paid to consider the continuous evolution characteristic of graphs over time (dynamic graphs). To address these challenges, we propose a novel GAD framework (EL$^{2}$-DGAD) to tackle anomaly detection problem in dynamic graphs with extremely limited labels. Specifically, a transformer-based graph encoder model is designed to more effectively preserve evolving graph structures beyond the local neighborhood. Then, we incorporate an ego-context hypersphere classification loss to classify temporal interactions according to their structure and temporal neighborhoods while ensuring the normal samples are mapped compactly against anomalous data. Finally, the above loss is further augmented with an ego-context contrasting module which utilizes unlabeled data to enhance model generalization. Extensive experiments on four datasets and three label rates demonstrate the effectiveness of the proposed method in comparison to the existing GAD methods.
Related papers
- AnomalyGFM: Graph Foundation Model for Zero/Few-shot Anomaly Detection [22.584555292512427]
AnomalyGFM is a graph foundation model that supports zero-shot inference and few-shot prompt tuning for GAD.
We show that AnomalyGFM significantly outperforms state-of-the-art competing methods under both zero- and few-shot GAD settings.
arXiv Detail & Related papers (2025-02-13T12:10:05Z) - UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
We propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD.
We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs.
Then, to weaken the influence of noise and redundant information on abnormal information extraction, we generate attribute-level and subgraph-level augmented-view graphs.
arXiv Detail & Related papers (2024-11-19T15:15:45Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - SAD: Semi-Supervised Anomaly Detection on Dynamic Graphs [11.819993729810257]
Anomaly detection aims to distinguish abnormal instances that deviate significantly from the majority of benign ones.
graph neural networks become increasingly popular in tackling the anomaly detection problem.
We present semi-supervised anomaly detection (SAD), an end-to-end framework for anomaly detection on dynamic graphs.
arXiv Detail & Related papers (2023-05-23T01:05:34Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
This paper devises a novel Data Augmentation-based Graph Anomaly Detection (DAGAD) framework for attributed graphs.
A series of experiments on three datasets prove that DAGAD outperforms ten state-of-the-art baseline detectors concerning various mostly-used metrics.
arXiv Detail & Related papers (2022-10-18T11:28:21Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.