Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints
- URL: http://arxiv.org/abs/2501.15084v1
- Date: Sat, 25 Jan 2025 05:26:17 GMT
- Title: Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints
- Authors: Kevin Pekepok, Persephone Kirkwood, Esme Christopolous, Florence Braithwaite, Oliver Nightingale,
- Abstract summary: The framework combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies.
It effectively distinguishes malicious encryption operations from benign activities while maintaining low false positive rates.
The inclusion of real-time anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection.
- Score: 0.0
- License:
- Abstract: The increasing sophistication of encryption-based ransomware has demanded innovative approaches to detection and mitigation, prompting the development of a hierarchical framework grounded in probabilistic cryptographic analysis. By focusing on the statistical characteristics of encryption patterns, the proposed methodology introduces a layered approach that combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies. Through comprehensive testing across diverse ransomware families, the framework demonstrated exceptional accuracy, effectively distinguishing malicious encryption operations from benign activities while maintaining low false positive rates. The system's design integrates dynamic feedback mechanisms, enabling adaptability to varying cryptographic complexities and operational environments. Detailed entropy-based evaluations revealed its sensitivity to subtle deviations in encryption workflows, offering a robust alternative to traditional detection methods reliant on static signatures or heuristics. Computational benchmarks confirmed its scalability and efficiency, achieving consistent performance even under high data loads and complex cryptographic scenarios. The inclusion of real-time clustering and anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection. Performance comparisons with established methods highlighted its improvements in detection efficacy, particularly against advanced ransomware employing extended key lengths and unique cryptographic protocols.
Related papers
- A Computational Model for Ransomware Detection Using Cross-Domain Entropy Signatures [0.0]
An entropy-based computational framework was introduced to analyze multi-domain system variations.
A detection methodology was developed to differentiate between benign and ransomware-induced entropy shifts.
arXiv Detail & Related papers (2025-02-15T07:50:55Z) - Hierarchical Entropy Disruption for Ransomware Detection: A Computationally-Driven Framework [0.0]
Monitoring entropy variations offers an alternative approach to identifying unauthorized data modifications.
A framework leveraging hierarchical entropy disruption was introduced to analyze deviations in entropy distributions.
evaluating the framework across multiple ransomware variants demonstrated its capability to achieve high detection accuracy.
arXiv Detail & Related papers (2025-02-12T23:29:06Z) - Hierarchical Manifold Projection for Ransomware Detection: A Novel Geometric Approach to Identifying Malicious Encryption Patterns [0.0]
Encryption-based cyber threats continue to evolve, employing increasingly sophisticated techniques to bypass traditional detection mechanisms.
A novel classification framework structured through hierarchical manifold projection introduces a mathematical approach to detecting malicious encryption.
The proposed methodology transforms encryption sequences into structured manifold embeddings, ensuring classification robustness through non-Euclidean feature separability.
arXiv Detail & Related papers (2025-02-11T23:20:58Z) - Hierarchical Entropic Diffusion for Ransomware Detection: A Probabilistic Approach to Behavioral Anomaly Isolation [0.0]
This paper introduces a structured entropy-based anomaly classification mechanism.
It tracks fluctuations in entropy evolution to differentiate between benign cryptographic processes and unauthorized encryption attempts.
It maintains high classification accuracy across diverse ransomware families, outperforming traditional-based and signature-driven approaches.
arXiv Detail & Related papers (2025-02-06T08:55:11Z) - Semantic Entanglement-Based Ransomware Detection via Probabilistic Latent Encryption Mapping [0.0]
Probabilistic Latent Encryption Mapping models encryption behaviors through statistical representations of entropy deviations and probabilistic dependencies in execution traces.
Evaluations demonstrate that entropy-driven classification reduces false positive rates while maintaining high detection accuracy across diverse ransomware families and encryption methodologies.
The ability to systematically infer encryption-induced deviations without requiring static attack signatures strengthens detection against adversarial evasion techniques.
arXiv Detail & Related papers (2025-02-04T21:27:58Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
Speech deepfakes pose a significant threat to personal security and content authenticity.
We introduce a novel approach for enhancing speech deepfake detection performance using a Mixture of Experts architecture.
arXiv Detail & Related papers (2024-09-24T13:24:03Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.