Technology Mapping with Large Language Models
- URL: http://arxiv.org/abs/2501.15120v1
- Date: Sat, 25 Jan 2025 08:18:15 GMT
- Title: Technology Mapping with Large Language Models
- Authors: Minh Hieu Nguyen, Hien Thu Pham, Hiep Minh Ha, Ngoc Quang Hung Le, Jun Jo,
- Abstract summary: STARS (Semantic Technology and Retrieval System) is a novel framework that harnesses Large Language Models (LLMs) and Sentence-BERT.
It pinpoints relevant technologies within unstructured content, build comprehensive company profiles, and rank each firm's technologies according to their operational importance.
Experimental results show that STARS markedly boosts retrieval accuracy, offering a versatile and high-performance solution for cross-industry technology mapping.
- Score: 1.1900482352079937
- License:
- Abstract: In today's fast-evolving business landscape, having insight into the technology stacks that organizations use is crucial for forging partnerships, uncovering market openings, and informing strategic choices. However, conventional technology mapping, which typically hinges on keyword searches, struggles with the sheer scale and variety of data available, often failing to capture nascent technologies. To overcome these hurdles, we present STARS (Semantic Technology and Retrieval System), a novel framework that harnesses Large Language Models (LLMs) and Sentence-BERT to pinpoint relevant technologies within unstructured content, build comprehensive company profiles, and rank each firm's technologies according to their operational importance. By integrating entity extraction with Chain-of-Thought prompting and employing semantic ranking, STARS provides a precise method for mapping corporate technology portfolios. Experimental results show that STARS markedly boosts retrieval accuracy, offering a versatile and high-performance solution for cross-industry technology mapping.
Related papers
- 3D Gaussian Splatting: Survey, Technologies, Challenges, and Opportunities [57.444435654131006]
3D Gaussian Splatting (3DGS) has emerged as a prominent technique with the potential to become a mainstream method for 3D representations.
This survey aims to analyze existing 3DGS-related works from multiple intersecting perspectives.
arXiv Detail & Related papers (2024-07-24T16:53:17Z) - Measuring Technological Convergence in Encryption Technologies with
Proximity Indices: A Text Mining and Bibliometric Analysis using OpenAlex [46.3643544723237]
This study identifies technological convergence among emerging technologies in cybersecurity.
The proposed method integrates text mining and bibliometric analyses to formulate and predict technological proximity indices.
Our case study findings highlight a significant convergence between blockchain and public-key cryptography, evidenced by the increasing proximity indices.
arXiv Detail & Related papers (2024-03-03T20:03:03Z) - Navigating the Knowledge Sea: Planet-scale answer retrieval using LLMs [0.0]
Information retrieval is characterized by a continuous refinement of techniques and technologies.
This paper focuses on the role of Large Language Models (LLMs) in bridging the gap between traditional search methods and the emerging paradigm of answer retrieval.
arXiv Detail & Related papers (2024-02-07T23:39:40Z) - ZzzGPT: An Interactive GPT Approach to Enhance Sleep Quality [9.249102003239663]
This paper explores the intersection of technology and sleep pattern comprehension, presenting a cutting-edge framework that harnesses the power of Large Language Models (LLMs)
The primary objective is to deliver precise sleep predictions paired with actionable feedback, addressing the limitations of existing solutions.
arXiv Detail & Related papers (2023-10-24T23:30:17Z) - Domain Knowledge Graph Construction Via A Simple Checker [0.0]
This work tackles the problem of knowledge graph construction from hardware-design domain texts.
We propose an oracle-checker scheme to leverage the power of GPT3.5.
arXiv Detail & Related papers (2023-10-08T00:09:31Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
We develop a new learning paradigm named INTERN.
By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability.
In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data.
arXiv Detail & Related papers (2021-11-16T18:42:50Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z) - Deep Technology Tracing for High-tech Companies [67.86308971806322]
We develop a novel data-driven solution, i.e., Deep Technology Forecasting (DTF) framework, to automatically find the most possible technology directions customized to each high-tech company.
DTF consists of three components: Potential Competitor Recognition (PCR), Collaborative Technology Recognition (CTR), and Deep Technology Tracing (DTT) neural network.
arXiv Detail & Related papers (2020-01-02T07:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.