SpikeDet: Better Firing Patterns for Accurate and Energy-Efficient Object Detection with Spiking Neuron Networks
- URL: http://arxiv.org/abs/2501.15151v3
- Date: Wed, 16 Jul 2025 10:09:55 GMT
- Title: SpikeDet: Better Firing Patterns for Accurate and Energy-Efficient Object Detection with Spiking Neuron Networks
- Authors: Yimeng Fan, Changsong Liu, Mingyang Li, Dongze Liu, Yanyan Liu, Wei Zhang,
- Abstract summary: Spiking Neural Networks (SNNs) are the third generation of neural networks.<n>They have gained widespread attention in object detection due to their low power consumption and biological interpretability.<n>Existing SNN-based object detection methods suffer from local firing saturation, where neurons in information-concentrated regions fire continuously throughout all time steps.<n>This abnormal neuron firing pattern reduces the feature discrimination capability and detection accuracy, while also increasing the firing rates that prevent SNNs from achieving their potential energy efficiency.
- Score: 13.848361661516595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) are the third generation of neural networks. They have gained widespread attention in object detection due to their low power consumption and biological interpretability. However, existing SNN-based object detection methods suffer from local firing saturation, where neurons in information-concentrated regions fire continuously throughout all time steps. This abnormal neuron firing pattern reduces the feature discrimination capability and detection accuracy, while also increasing the firing rates that prevent SNNs from achieving their potential energy efficiency. To address this problem, we propose SpikeDet, a novel spiking object detector that optimizes firing patterns for accurate and energy-efficient detection. Specifically, we design a spiking backbone network, MDSNet, which effectively adjusts the membrane synaptic input distribution at each layer, achieving better neuron firing patterns during spiking feature extraction. Additionally, to better utilize and preserve these high-quality backbone features, we introduce the Spiking Multi-direction Fusion Module (SMFM), which realizes multi-direction fusion of spiking features, enhancing the multi-scale detection capability of the model. Experimental results demonstrate that SpikeDet achieves superior performance. On the COCO 2017 dataset, it achieves 51.4% AP, outperforming previous SNN-based methods by 2.5% AP while requiring only half the power consumption. On object detection sub-tasks, including the GEN1 event-based dataset and the URPC 2019 underwater dataset, SpikeDet also achieves the best performance. Notably, on GEN1, our method achieves 47.6% AP, outperforming previous SNN-based methods by 7.2% AP with better energy efficiency.
Related papers
- Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs)
We propose SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR.
arXiv Detail & Related papers (2025-03-06T09:06:06Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection [15.154553304520164]
Spiking Neural Networks (SNNs) have bio-plaus and low-power advantages over Artificial Neural Networks (ANNs)
In this work, we focus on bridging the performance gap between ANNs and SNNs on object detection.
We design a SpikeYOLO architecture to solve this problem by simplifying the vanilla YOLO and incorporating meta SNN blocks.
arXiv Detail & Related papers (2024-07-30T10:04:16Z) - SFOD: Spiking Fusion Object Detector [10.888008544975662]
Spiking Fusion Object Detector (SFOD) is a simple and efficient approach to SNN-based object detection.
We design a Spiking Fusion Module, achieving the first-time fusion of feature maps from different scales in SNNs applied to event cameras.
We establish state-of-the-art classification results based on SNNs, achieving 93.7% accuracy on the NCAR dataset.
arXiv Detail & Related papers (2024-03-22T13:24:50Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks [0.40054215937601956]
Spiking Neural Networks (SNNs) are a biologically plausible neural network model with significant advantages in both event-driven processing and processing-temporal information.
In this study, we introduce the Current Mean Decoding (CMD) method, which solves the regression problem to facilitate the training of deep SNNs for object detection tasks.
Based on the gradient surrogate and CMD, we propose the SNN-YOLOv3 model for object detection.
arXiv Detail & Related papers (2023-09-07T15:48:00Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Spiking Denoising Diffusion Probabilistic Models [11.018937744626387]
Spiking neural networks (SNNs) have ultra-low energy consumption and high biological plausibility.
We propose Spiking Denoising Diffusion Probabilistic Models (SDDPM), a new class of SNN-based generative models that achieve high sample quality.
Our approach achieves state-of-the-art on the generative tasks and substantially outperforms other SNN-based generative models.
arXiv Detail & Related papers (2023-06-29T15:43:06Z) - Spikingformer: Spike-driven Residual Learning for Transformer-based
Spiking Neural Network [19.932683405796126]
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks.
SNNs suffer from non-spike computations caused by the structure of their residual connection.
We develop Spikingformer, a pure transformer-based spiking neural network.
arXiv Detail & Related papers (2023-04-24T09:44:24Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the self-attention mechanism.
We propose a novel Spiking Self Attention (SSA) as well as a powerful framework, named Spiking Transformer (Spikformer)
arXiv Detail & Related papers (2022-09-29T14:16:49Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - A Fully Spiking Hybrid Neural Network for Energy-Efficient Object
Detection [6.792495874038191]
Fully Spiking Hybrid Neural Network (FSHNN) for energy-efficient and robust object detection.
Network architecture is based on Convolutional SNN using leaky-integrate-fire neuron models.
arXiv Detail & Related papers (2021-04-21T18:39:32Z) - SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with
Continual and Unsupervised Learning Capabilities in Dynamic Environments [14.727296040550392]
Spiking Neural Networks (SNNs) bear the potential of efficient unsupervised and continual learning capabilities because of their biological plausibility.
We propose SpikeDyn, a framework for energy-efficient SNNs with continual and unsupervised learning capabilities in dynamic environments.
arXiv Detail & Related papers (2021-02-28T08:26:23Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.