Median of Forests for Robust Density Estimation
- URL: http://arxiv.org/abs/2501.15157v1
- Date: Sat, 25 Jan 2025 09:45:51 GMT
- Title: Median of Forests for Robust Density Estimation
- Authors: Hongwei Wen, Annika Betken, Tao Huang,
- Abstract summary: We propose an ensemble learning algorithm called textitmedians of forests for robust density estimation (textitMFRDE)
MFRDE enables us to choose larger subsampling sizes, sacrificing less accuracy for density estimation while achieving robustness.
On the practical side, real data experiments show that MFRDE outperforms existing robust kernel-based methods.
- Score: 6.696552548865382
- License:
- Abstract: Robust density estimation refers to the consistent estimation of the density function even when the data is contaminated by outliers. We find that existing forest density estimation at a certain point is inherently resistant to the outliers outside the cells containing the point, which we call \textit{non-local outliers}, but not resistant to the rest \textit{local outliers}. To achieve robustness against all outliers, we propose an ensemble learning algorithm called \textit{medians of forests for robust density estimation} (\textit{MFRDE}), which adopts a pointwise median operation on forest density estimators fitted on subsampled datasets. Compared to existing robust kernel-based methods, MFRDE enables us to choose larger subsampling sizes, sacrificing less accuracy for density estimation while achieving robustness. On the theoretical side, we introduce the local outlier exponent to quantify the number of local outliers. Under this exponent, we show that even if the number of outliers reaches a certain polynomial order in the sample size, MFRDE is able to achieve almost the same convergence rate as the same algorithm on uncontaminated data, whereas robust kernel-based methods fail. On the practical side, real data experiments show that MFRDE outperforms existing robust kernel-based methods. Moreover, we apply MFRDE to anomaly detection to showcase a further application.
Related papers
- ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection [41.41164637577005]
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning.
We propose a novel theoretical framework grounded in Bregman divergence to provide a unified perspective on density-based score design.
We show that our proposed textscConjNorm has established a new state-of-the-art in a variety of OOD detection setups.
arXiv Detail & Related papers (2024-02-27T21:02:47Z) - Robust Multi-Modal Density Estimation [14.643918024937758]
ROME (RObust Multi-modal Estimator) is a non-parametric approach for density estimation.
We show that ROME can overcome the issues of over-fitting and over-smoothing exhibited by other estimators.
arXiv Detail & Related papers (2024-01-19T09:10:58Z) - Robust Inference of Manifold Density and Geometry by Doubly Stochastic
Scaling [8.271859911016719]
We develop tools for robust inference under high-dimensional noise.
We show that our approach is robust to variability in technical noise levels across cell types.
arXiv Detail & Related papers (2022-09-16T15:39:11Z) - Fast Kernel Density Estimation with Density Matrices and Random Fourier
Features [0.0]
kernels density estimation (KDE) is one of the most widely used nonparametric density estimation methods.
DMKDE uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates.
DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data.
arXiv Detail & Related papers (2022-08-02T02:11:10Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Featurized Density Ratio Estimation [82.40706152910292]
In our work, we propose to leverage an invertible generative model to map the two distributions into a common feature space prior to estimation.
This featurization brings the densities closer together in latent space, sidestepping pathological scenarios where the learned density ratios in input space can be arbitrarily inaccurate.
At the same time, the invertibility of our feature map guarantees that the ratios computed in feature space are equivalent to those in input space.
arXiv Detail & Related papers (2021-07-05T18:30:26Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
Existing methods for (relative) density-ratio estimation (DRE) require many instances from both densities.
We propose a meta-learning method for relative DRE, which estimates the relative density-ratio from a few instances by using knowledge in related datasets.
We empirically demonstrate the effectiveness of the proposed method by using three problems: relative DRE, dataset comparison, and outlier detection.
arXiv Detail & Related papers (2021-07-02T02:13:45Z) - Improved Estimation of Concentration Under $\ell_p$-Norm Distance
Metrics Using Half Spaces [14.947511752748005]
Concentration of measure has been argued to be the fundamental cause of adversarial vulnerability.
We propose a method to estimate the concentration of any empirical dataset under $ell_p$-norm distance metrics.
Our proposed algorithm is more efficient than Mahloujifar et al.'s, and our experiments on synthetic datasets and image benchmarks demonstrate that it is able to find much tighter intrinsic robustness bounds.
arXiv Detail & Related papers (2021-03-24T01:16:28Z) - Nonparametric Density Estimation from Markov Chains [68.8204255655161]
We introduce a new nonparametric density estimator inspired by Markov Chains, and generalizing the well-known Kernel Density Estor.
Our estimator presents several benefits with respect to the usual ones and can be used straightforwardly as a foundation in all density-based algorithms.
arXiv Detail & Related papers (2020-09-08T18:33:42Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.