論文の概要: Who is the root in a syntactic dependency structure?
- arxiv url: http://arxiv.org/abs/2501.15188v2
- Date: Sun, 23 Mar 2025 12:58:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:29:14.484652
- Title: Who is the root in a syntactic dependency structure?
- Title(参考訳): 構文依存構造の根源は誰か?
- Authors: Ramon Ferrer-i-Cancho, Marta Arias,
- Abstract要約: ネットワーク科学の観点からは,根性という普遍的な概念に対する理論的かつ実証的な基礎を提供する。
文の構文構造を単語間の構文的関係を示す木として考える。
- 参考スコア(独自算出の注目度): 0.13812010983144798
- License:
- Abstract: The syntactic structure of a sentence can be described as a tree that indicates the syntactic relationships between words. In spite of significant progress in unsupervised methods that retrieve the syntactic structure of sentences, guessing the right direction of edges is still a challenge. As in a syntactic dependency structure edges are oriented away from the root, the challenge of guessing the right direction can be reduced to finding an undirected tree and the root. The limited performance of current unsupervised methods demonstrates the lack of a proper understanding of what a root vertex is from first principles. We consider an ensemble of centrality scores, some that only take into account the free tree (non-spatial scores) and others that take into account the position of vertices (spatial scores). We test the hypothesis that the root vertex is an important or central vertex of the syntactic dependency structure. We confirm that hypothesis and find that the best performance in guessing the root is achieved by novel scores that only take into account the position of a vertex and that of its neighbours. We provide theoretical and empirical foundations towards a universal notion of rootness from a network science perspective.
- Abstract(参考訳): 文の構文構造は、単語間の構文的関係を示す木として記述することができる。
文の構文構造を復元する教師なし手法の進歩にもかかわらず、エッジの正しい方向を推測することは依然として困難である。
構文的依存構造エッジが根から遠ざかっているように、正しい方向を推測する課題は、無向木と根を見つけることまで減らすことができる。
現在の教師なしメソッドの限られた性能は、ルート頂点が第一原理から何であるかを適切に理解していないことを示している。
中心性スコアのアンサンブル、自由木(非空間スコア)を考慮に入れているもの、頂点の位置(空間スコア)を考慮に入れているもののみを考慮する。
我々は,根頂点が構文依存構造の重要な頂点あるいは中心頂点であるという仮説を検証した。
この仮説を検証し、頂点の位置とその近傍の位置を考慮に入れた新しいスコアによって、根の推測における最良の性能が達成されることを示す。
ネットワーク科学の観点からは,根性という普遍的な概念に対する理論的かつ実証的な基礎を提供する。
関連論文リスト
- Data-driven Coreference-based Ontology Building [48.995395445597225]
参照解決は、伝統的に個々の文書理解のコンポーネントとして使用される。
よりグローバルな視点で、すべてのドキュメントレベルのコア参照関係から、ドメインについて何が学べるかを探求します。
コードとともに、クリエイティブ・コモンズライセンスの下でコア参照チェーンをリリースします。
論文 参考訳(メタデータ) (2024-10-22T14:30:40Z) - Integrating Hierarchical Semantic into Iterative Generation Model for Entailment Tree Explanation [7.5496857647335585]
本稿では,HiSCG (Controller-Generator) の枠組みに基づいて文の階層的意味論を統合するアーキテクチャを提案する。
提案手法はEntailmentBankデータセットの3つの設定で同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-26T11:46:58Z) - Federated Graph Semantic and Structural Learning [54.97668931176513]
本稿では,ノードレベルのセマンティクスとグラフレベルの構造の両方によって局所的なクライアントの歪みがもたらされることを示す。
構造的グラフニューラルネットワークは、固有の隣接関係のため、隣人に類似性を持っていると仮定する。
我々は、隣接関係を類似度分布に変換し、グローバルモデルを利用して関係知識を局所モデルに蒸留する。
論文 参考訳(メタデータ) (2024-06-27T07:08:28Z) - The optimal placement of the head in the noun phrase. The case of demonstrative, numeral, adjective and noun [0.16317061277456998]
言語において好まれる順序によって、名詞は終わりの1つに置かれる傾向があることを示す。
我々はまた、アンチローカリティ効果の証拠も示している: 望ましい順序における構文依存は、偶然に予想されるよりも長い。
論文 参考訳(メタデータ) (2024-02-15T20:24:39Z) - Root Cause Explanation of Outliers under Noisy Mechanisms [50.59446568076628]
因果過程は、しばしばグラフとしてモデル化され、エンティティはノードであり、パス/インターコネクションはエッジである。
既存の作業は、生成プロセスにおけるノードの寄与のみを考慮している。
根本原因を特定する際,各メカニズムの個々のエッジとノードについて検討する。
論文 参考訳(メタデータ) (2023-12-19T03:24:26Z) - Probabilistic Tree-of-thought Reasoning for Answering
Knowledge-intensive Complex Questions [93.40614719648386]
大規模言語モデル(LLM)は、知識集約的な複雑な質問にチェーン・オブ・シント(CoT)推論で答えることができる。
最近の研究は、CoT推論を強化するための外部知識の回収に向けられている。
確率的ツリー・オブ・シント推論(ProbTree)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:52:37Z) - An Embedding-based Approach to Inconsistency-tolerant Reasoning with
Inconsistent Ontologies [12.760301272393898]
本稿では,公理の埋め込みに基づく一貫性のない意味論による推論手法を提案する。
組込みに基づく手法は、最大一貫した部分集合に基づく既存の矛盾耐性推論手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-04T09:38:02Z) - Visual Superordinate Abstraction for Robust Concept Learning [80.15940996821541]
概念学習は言語意味論と結びついた視覚表現を構成する。
視覚概念の本質的な意味的階層を探索する失敗のボトルネックについて説明する。
本稿では,意味認識型視覚サブ空間を明示的にモデル化するビジュアル・スーパーオーディネート・抽象化・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-28T14:27:38Z) - To be Closer: Learning to Link up Aspects with Opinions [18.956990787407793]
アスペクトベース感情分析(ABSA)における係り受け解析木の有用性
本研究では,アスペクト中心のツリー構造を学習することで,アスペクトと対応する意見語の距離を短くすることを目的とする。
学習プロセスにより、木構造はアスペクトと意見語を適応的に相関させ、ABSAタスクの極性をよりよく識別することができる。
論文 参考訳(メタデータ) (2021-09-17T07:37:13Z) - A Weaker Faithfulness Assumption based on Triple Interactions [89.59955143854556]
より弱い仮定として, 2$-adjacency faithfulness を提案します。
より弱い仮定の下で適用可能な因果発見のための音方向規則を提案する。
論文 参考訳(メタデータ) (2020-10-27T13:04:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。