Extracting Forward Invariant Sets from Neural Network-Based Control Barrier Functions
- URL: http://arxiv.org/abs/2501.15189v1
- Date: Sat, 25 Jan 2025 12:01:56 GMT
- Title: Extracting Forward Invariant Sets from Neural Network-Based Control Barrier Functions
- Authors: Goli Vaisi, James Ferlez, Yasser Shoukry,
- Abstract summary: Training Neural Networks (NNs) to serve as Barrier Functions (BFs) is a popular way to improve the safety of autonomous dynamical systems.
Despite significant practical success, these methods are not generally guaranteed to produce true BFs in a provable sense.
We propose a sound algorithm that efficiently produces such a certificate set for a shallow NN.
- Score: 2.3677503557659705
- License:
- Abstract: Training Neural Networks (NNs) to serve as Barrier Functions (BFs) is a popular way to improve the safety of autonomous dynamical systems. Despite significant practical success, these methods are not generally guaranteed to produce true BFs in a provable sense, which undermines their intended use as safety certificates. In this paper, we consider the problem of formally certifying a learned NN as a BF with respect to state avoidance for an autonomous system: viz. computing a region of the state space on which the candidate NN is provably a BF. In particular, we propose a sound algorithm that efficiently produces such a certificate set for a shallow NN. Our algorithm combines two novel approaches: it first uses NN reachability tools to identify a subset of states for which the output of the NN does not increase along system trajectories; then, it uses a novel enumeration algorithm for hyperplane arrangements to find the intersection of the NN's zero-sub-level set with the first set of states. In this way, our algorithm soundly finds a subset of states on which the NN is certified as a BF. We further demonstrate the effectiveness of our algorithm at certifying for real-world NNs as BFs in two case studies. We complemented these with scalability experiments that demonstrate the efficiency of our algorithm.
Related papers
- Neural Network Verification with Branch-and-Bound for General Nonlinearities [63.39918329535165]
Branch-and-bound (BaB) is among the most effective techniques for neural network (NN) verification.
We develop a general framework, named GenBaB, to conduct BaB on general nonlinearities to verify NNs with general architectures.
Our framework also allows the verification of general nonlinear graphs and enables verification applications beyond simple NNs.
arXiv Detail & Related papers (2024-05-31T17:51:07Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Provably Safe Neural Network Controllers via Differential Dynamic Logic [2.416907802598482]
We present the first general approach that allows reusing control theory results for NNCS verification.
Based on provably safe control envelopes in dL, we derive specifications for the NN which is proven via NN verification.
We show that a proof of the NN adhering to the specification is mirrored by a dL proof on the infinite-time safety of the NNCS.
arXiv Detail & Related papers (2024-02-16T16:15:25Z) - Tight Verification of Probabilistic Robustness in Bayesian Neural
Networks [17.499817915644467]
We introduce two algorithms for computing tight guarantees on the probabilistic robustness of Bayesian Neural Networks (BNNs)
Our algorithms efficiently search the parameters' space for safe weights by using iterative expansion and the network's gradient.
In addition to proving that our algorithms compute tighter bounds than the SoA, we also evaluate our algorithms against the SoA on standard benchmarks.
arXiv Detail & Related papers (2024-01-21T23:41:32Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs.
arXiv Detail & Related papers (2022-09-28T13:17:28Z) - Automated Repair of Neural Networks [0.26651200086513094]
We introduce a framework for repairing unsafe NNs w.r.t. safety specification.
Our method is able to search for a new, safe NN representation, by modifying only a few of its weight values.
We perform extensive experiments which demonstrate the capability of our proposed framework to yield safe NNs w.r.t.
arXiv Detail & Related papers (2022-07-17T12:42:24Z) - Backward Reachability Analysis for Neural Feedback Loops [40.989393438716476]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present an algorithm to iteratively find BP set estimates over a given time horizon and demonstrate the ability to reduce conservativeness by up to 88% with low additional computational cost.
arXiv Detail & Related papers (2022-04-14T01:13:14Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.