New Evaluation Paradigm for Lexical Simplification
- URL: http://arxiv.org/abs/2501.15268v1
- Date: Sat, 25 Jan 2025 16:31:37 GMT
- Title: New Evaluation Paradigm for Lexical Simplification
- Authors: Jipeng Qiang, Minjiang Huang, Yi Zhu, Yunhao Yuan, Chaowei Zhang, Xiaoye Ouyang,
- Abstract summary: Lexical Simplification (LS) methods use a three-step pipeline: complex word identification, substitute generation, and substitute ranking.
We found large language models (LLMs) can simplify sentences directly with a single prompt, bypassing the traditional pipeline.
We propose a new annotation method for constructing an all-in-one LS dataset through human-machine collaboration.
- Score: 15.890439726439276
- License:
- Abstract: Lexical Simplification (LS) methods use a three-step pipeline: complex word identification, substitute generation, and substitute ranking, each with separate evaluation datasets. We found large language models (LLMs) can simplify sentences directly with a single prompt, bypassing the traditional pipeline. However, existing LS datasets are not suitable for evaluating these LLM-generated simplified sentences, as they focus on providing substitutes for single complex words without identifying all complex words in a sentence. To address this gap, we propose a new annotation method for constructing an all-in-one LS dataset through human-machine collaboration. Automated methods generate a pool of potential substitutes, which human annotators then assess, suggesting additional alternatives as needed. Additionally, we explore LLM-based methods with single prompts, in-context learning, and chain-of-thought techniques. We introduce a multi-LLMs collaboration approach to simulate each step of the LS task. Experimental results demonstrate that LS based on multi-LLMs approaches significantly outperforms existing baselines.
Related papers
- Redefining Simplicity: Benchmarking Large Language Models from Lexical to Document Simplification [21.727596753351072]
Text simplification (TS) refers to the process of reducing the complexity of a text while retaining its original meaning and key information.
Existing work only shows that large language models (LLMs) have outperformed supervised non-LLM-based methods on sentence simplification.
arXiv Detail & Related papers (2025-02-12T10:38:22Z) - LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE)
LLMs-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine to generate feedback-akin to textual gradients.
It consistently outperforms existing textual gradient baselines in both accuracy and training cost.
arXiv Detail & Related papers (2025-01-28T03:18:48Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
arXiv Detail & Related papers (2024-04-29T04:51:30Z) - An LLM-Enhanced Adversarial Editing System for Lexical Simplification [10.519804917399744]
Lexical Simplification aims to simplify text at the lexical level.
Existing methods rely heavily on annotated data.
We propose a novel LS method without parallel corpora.
arXiv Detail & Related papers (2024-02-22T17:04:30Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
We introduce a sentence-level detection challenge by synthesizing documents polished with large language models (LLMs)
We then propose textbfSequence textbfX (Check) textbfGPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection.
arXiv Detail & Related papers (2023-10-13T07:18:53Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
We propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.
Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM.
arXiv Detail & Related papers (2023-04-27T14:45:55Z) - Sentence Simplification via Large Language Models [15.07021692249856]
Sentence Simplification aims to rephrase complex sentences into simpler sentences while retaining original meaning.
Large Language models (LLMs) have demonstrated the ability to perform a variety of natural language processing tasks.
arXiv Detail & Related papers (2023-02-23T12:11:58Z) - Chinese Lexical Simplification [29.464388721085548]
There is no research work for Chinese lexical simplification ( CLS) task.
To circumvent difficulties in acquiring annotations, we manually create the first benchmark dataset for CLS.
We present five different types of methods as baselines to generate substitute candidates for the complex word.
arXiv Detail & Related papers (2020-10-14T12:55:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.