PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval
- URL: http://arxiv.org/abs/2404.18424v3
- Date: Sat, 19 Oct 2024 01:07:37 GMT
- Title: PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval
- Authors: Shengyao Zhuang, Xueguang Ma, Bevan Koopman, Jimmy Lin, Guido Zuccon,
- Abstract summary: We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
- Score: 76.50690734636477
- License:
- Abstract: Utilizing large language models (LLMs) for zero-shot document ranking is done in one of two ways: (1) prompt-based re-ranking methods, which require no further training but are only feasible for re-ranking a handful of candidate documents due to computational costs; and (2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training. In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token's hidden states and the corresponding logits associated with the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM. Our experimental evaluation on the MSMARCO, TREC deep learning and BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.
Related papers
- R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses.
Existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks.
We propose a new pipeline named "Reinforced Retriever-Reorder-Responder" to learn document orderings for retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-05-04T12:59:10Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
Dense retrieval needs to learn discriminative text embeddings to represent the semantic relationship between query and document.
It may benefit from the using of large language models (LLMs), given LLMs' strong capability on semantic understanding.
We propose LLaRA (LLM adapted for dense RetrievAl), which works as a post-hoc adaptation of dense retrieval application.
arXiv Detail & Related papers (2023-12-24T15:10:35Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
We propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.
Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM.
arXiv Detail & Related papers (2023-04-27T14:45:55Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
The proposed method first generates pseudo- documents by few-shot prompting large language models (LLMs)
query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets.
Our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.
arXiv Detail & Related papers (2023-03-14T07:27:30Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.