論文の概要: PIP: Perturbation-based Iterative Pruning for Large Language Models
- arxiv url: http://arxiv.org/abs/2501.15278v1
- Date: Sat, 25 Jan 2025 17:10:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:32.040255
- Title: PIP: Perturbation-based Iterative Pruning for Large Language Models
- Title(参考訳): PIP:大規模言語モデルのための摂動に基づく反復的プルーニング
- Authors: Yi Cao, Wei-Jie Xu, Yucheng Shen, Weijie Shi, Chi-Min Chan, Jiajie Xu,
- Abstract要約: PIP (Perturbation-based Iterative Pruning) は,大規模言語モデルを最適化する新しい二重ビュー構造化プルーニング手法である。
実験の結果,PIPは元のモデルの精度の85%以上を維持しつつ,パラメータ数を約20%削減できることがわかった。
- 参考スコア(独自算出の注目度): 5.511065308044068
- License:
- Abstract: The rapid increase in the parameter counts of Large Language Models (LLMs), reaching billions or even trillions, presents significant challenges for their practical deployment, particularly in resource-constrained environments. To ease this issue, we propose PIP (Perturbation-based Iterative Pruning), a novel double-view structured pruning method to optimize LLMs, which combines information from two different views: the unperturbed view and the perturbed view. With the calculation of gradient differences, PIP iteratively prunes those that struggle to distinguish between these two views. Our experiments show that PIP reduces the parameter count by approximately 20% while retaining over 85% of the original model's accuracy across varied benchmarks. In some cases, the performance of the pruned model is within 5% of the unpruned version, demonstrating PIP's ability to preserve key aspects of model effectiveness. Moreover, PIP consistently outperforms existing state-of-the-art (SOTA) structured pruning methods, establishing it as a leading technique for optimizing LLMs in environments with constrained resources. Our code is available at: https://github.com/caoyiiiiii/PIP.
- Abstract(参考訳): 大規模言語モデル(LLM)のパラメータ数が急速に増加し、数十億、あるいは数兆にも達し、特に資源に制約のある環境での実践的な展開において、大きな課題が提示される。
この問題を緩和するために,2つの異なる視点からの情報(摂動ビューと摂動ビュー)を組み合わせ,LLMを最適化する新しいダブルビュー構造化プルーニング手法であるPIP(Perturbation-based Iterative Pruning)を提案する。
勾配差の計算により、PIPはこれらの2つの見解の区別に苦慮している人たちを反復的に引き起こす。
実験の結果、PIPはパラメータ数を約20%削減し、元のモデルの精度の85%以上を様々なベンチマークで保持していることがわかった。
いくつかのケースでは、プルーンドモデルの性能は未実行バージョンの5%以内であり、PIPがモデルの有効性の重要な側面を保存する能力を示している。
さらに、PIPは既存のSOTA(State-of-the-art)構造化プルーニング手法を一貫して上回り、制約のある資源を持つ環境においてLLMを最適化する主要な手法として確立した。
私たちのコードは、https://github.com/caoyiiiiii/PIP.com/で利用可能です。
関連論文リスト
- Progressive Binarization with Semi-Structured Pruning for LLMs [36.32239429974179]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な成功を収めた。
彼らの高い計算量とメモリ要求は、リソース制約のあるデバイスへのデプロイに困難をもたらす。
LLM圧縮のための半構造化プルーニング(PBS$2$P)法によるプログレッシブバイナリ化を提案する。
論文 参考訳(メタデータ) (2025-02-03T13:30:29Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - A Convex-optimization-based Layer-wise Post-training Pruner for Large Language Models [24.185245582500876]
本稿では,凸最適化モデルとアルゴリズムに基づく最初のポストトレーニングプルーナであるFISTAPrunerを紹介する。
FISTAPrunerは層内累積誤差補正機構を搭載し、並列プルーニングをサポートする。
OPT, LLaMA, LLaMA-2, LLaMA-3 などのモデルにおける FISTAPruner の評価を行った。
論文 参考訳(メタデータ) (2024-08-07T12:33:46Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with
Module-wise Pruning Error Metric [57.3330687266266]
より小さな事前学習モデルを用いてCLIPモデルに等級に基づくプルーニングを適用すると、柔軟性が低下し、性能が低下することがわかった。
The Module-wise Pruning Error (MoPE) metric, we introduced a unified pruning framework for both pre-training and task-specific fine-tuning compression stage。
論文 参考訳(メタデータ) (2024-03-12T17:24:26Z) - Fluctuation-based Adaptive Structured Pruning for Large Language Models [44.217363567065]
FLAP(FLuctuation-based Adaptive Structured Pruning)は、大規模言語モデルのためのトレーニング不要な構造化プルーニングフレームワークである。
ストレージを効果的に削減し、推論速度を向上することで、ハードウェアに優しい。
論文 参考訳(メタデータ) (2023-12-19T09:23:48Z) - CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly
Detection [49.510604614688745]
大規模視覚言語モデルCLIPのゼロショット機能を活用するために,CLIP-ADというフレームワークを提案する。
異常写像の直接計算における逆の予測と無関係なハイライトについて述べる。
論文 参考訳(メタデータ) (2023-11-01T11:39:22Z) - MLPruning: A Multilevel Structured Pruning Framework for
Transformer-based Models [78.45898846056303]
プルーニングは、大きな自然言語処理モデルに関連するメモリフットプリントと計算コストを削減する効果的な方法である。
我々は,頭部刈り込み,行刈り,ブロックワイズ刈りという3つの異なるレベルの構造化刈り込みを利用する,新しいマルチレベル構造化刈り込みフレームワークを開発した。
論文 参考訳(メタデータ) (2021-05-30T22:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。