論文の概要: Pre-training a Transformer-Based Generative Model Using a Small Sepedi Dataset
- arxiv url: http://arxiv.org/abs/2501.15281v1
- Date: Sat, 25 Jan 2025 17:25:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:12.891877
- Title: Pre-training a Transformer-Based Generative Model Using a Small Sepedi Dataset
- Title(参考訳): 小型セプディデータセットを用いた変圧器ベース生成モデルの事前学習
- Authors: Simon P. Ramalepe, Thipe I. Modipa, Marelie H. Davel,
- Abstract要約: 南アフリカのいくつかのリソースから得られたSepedi monolingual(SepMono)データセットと、ラジオニュースドメインからのSepedi Radio News(SepNews)データセットを使用します。
以上の結果から,非閉塞モデルの方が,検証損失とパープレキシティの測定において,オクルージョンベースモデルよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.5530212768657544
- License:
- Abstract: Due to the scarcity of data in low-resourced languages, the development of language models for these languages has been very slow. Currently, pre-trained language models have gained popularity in natural language processing, especially, in developing domain-specific models for low-resourced languages. In this study, we experiment with the impact of using occlusion-based techniques when training a language model for a text generation task. We curate 2 new datasets, the Sepedi monolingual (SepMono) dataset from several South African resources and the Sepedi radio news (SepNews) dataset from the radio news domain. We use the SepMono dataset to pre-train transformer-based models using the occlusion and non-occlusion pre-training techniques and compare performance. The SepNews dataset is specifically used for fine-tuning. Our results show that the non-occlusion models perform better compared to the occlusion-based models when measuring validation loss and perplexity. However, analysis of the generated text using the BLEU score metric, which measures the quality of the generated text, shows a slightly higher BLEU score for the occlusion-based models compared to the non-occlusion models.
- Abstract(参考訳): 低リソース言語におけるデータ不足のため、これらの言語のための言語モデルの開発は非常に遅かった。
現在、訓練済みの言語モデルは、特に低リソース言語のためのドメイン固有モデルの開発において、自然言語処理において人気を集めている。
本研究では,テキスト生成タスクにおける言語モデルの訓練において,オクルージョンに基づく手法が与える影響を実験的に検討する。
南アフリカのいくつかのリソースから得られたSepedi monolingual(SepMono)データセットと、ラジオニュースドメインからのSepedi Radio News(SepNews)データセットの2つの新しいデータセットをキュレートする。
我々は、SepMonoデータセットを使用して、オクルージョンと非オクルージョン事前トレーニング技術を用いてトランスフォーマーベースのモデルを事前トレーニングし、性能の比較を行う。
SepNewsデータセットは特に微調整に使用される。
以上の結果から,非閉塞モデルの方が,検証損失とパープレキシティの測定において,オクルージョンベースモデルよりも優れた性能を示した。
しかし,生成テキストの質を計測するBLEUスコア測定値を用いて生成テキストの分析を行ったところ,非閉塞モデルと比較すると,咬合ベースモデルに対するBLEUスコアはわずかに高い値を示した。
関連論文リスト
- Dissecting vocabulary biases datasets through statistical testing and
automated data augmentation for artifact mitigation in Natural Language
Inference [3.154631846975021]
我々は、データセットのアーティファクトを調査し、これらの問題に対処するための戦略を開発することに重点を置いている。
文字レベルから単語レベルにまたがる複数の自動データ拡張戦略を提案する。
実験により,提案手法はモデル精度を効果的に向上し,バイアスを最大0.66%,バイアスを1.14%低減することを示した。
論文 参考訳(メタデータ) (2023-12-14T08:46:26Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - Multi-Scales Data Augmentation Approach In Natural Language Inference
For Artifacts Mitigation And Pre-Trained Model Optimization [0.0]
クラウドソーシングされたStanford Natural Language Inference corpus内でデータセットのアーティファクトを分析し、配置するための様々な技術を提供する。
データセットアーティファクトを緩和するために、2つの異なるフレームワークで独自のマルチスケールデータ拡張技術を採用している。
本手法は, 摂動試験に対するモデルの抵抗性を向上し, トレーニング済みベースラインの連続的な性能向上を可能にする。
論文 参考訳(メタデータ) (2022-12-16T23:37:44Z) - Pre-Training a Language Model Without Human Language [74.11825654535895]
先行学習データの本質的性質が下流性能の微調整にどのように寄与するかを検討する。
非構造化データで事前に訓練されたモデルは、下流のタスクでゼロから訓練されたモデルに勝った。
驚くべきことに、特定の非人間言語データの事前トレーニングがGLUEのパフォーマンスを他の非英語言語で事前トレーニングされたパフォーマンスに近づけることを明らかにしました。
論文 参考訳(メタデータ) (2020-12-22T13:38:06Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
本研究では,事前学習した Transformer ベースの言語モデル BERT の微調整手法について検討する。
実験結果から,モデルの知識獲得度を最大化することで,モデル性能の優位性を示す。
我々は、微調整中の言語モデルの凍結層の利点を分析し、トレーニング可能なパラメータの数を減らす。
論文 参考訳(メタデータ) (2020-12-04T08:34:39Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。