Acquiring Submillimeter-Accurate Multi-Task Vision Datasets for Computer-Assisted Orthopedic Surgery
- URL: http://arxiv.org/abs/2501.15371v2
- Date: Tue, 28 Jan 2025 15:56:14 GMT
- Title: Acquiring Submillimeter-Accurate Multi-Task Vision Datasets for Computer-Assisted Orthopedic Surgery
- Authors: Emma Most, Jonas Hein, Frédéric Giraud, Nicola A. Cavalcanti, Lukas Zingg, Baptiste Brument, Nino Louman, Fabio Carrillo, Philipp Fürnstahl, Lilian Calvet,
- Abstract summary: We generate realistic and accurate ex vivo datasets tailored for 3D reconstruction and feature matching in open orthopedic surgery.
A mean 3D Euclidean error of 0.35 mm is achieved with respect to the 3D ground truth.
This opens the door to acquiring future surgical datasets for high-precision applications.
- Score: 0.9268994664916388
- License:
- Abstract: Advances in computer vision, particularly in optical image-based 3D reconstruction and feature matching, enable applications like marker-less surgical navigation and digitization of surgery. However, their development is hindered by a lack of suitable datasets with 3D ground truth. This work explores an approach to generating realistic and accurate ex vivo datasets tailored for 3D reconstruction and feature matching in open orthopedic surgery. A set of posed images and an accurately registered ground truth surface mesh of the scene are required to develop vision-based 3D reconstruction and matching methods suitable for surgery. We propose a framework consisting of three core steps and compare different methods for each step: 3D scanning, calibration of viewpoints for a set of high-resolution RGB images, and an optical-based method for scene registration. We evaluate each step of this framework on an ex vivo scoliosis surgery using a pig spine, conducted under real operating room conditions. A mean 3D Euclidean error of 0.35 mm is achieved with respect to the 3D ground truth. The proposed method results in submillimeter accurate 3D ground truths and surgical images with a spatial resolution of 0.1 mm. This opens the door to acquiring future surgical datasets for high-precision applications.
Related papers
- MedTet: An Online Motion Model for 4D Heart Reconstruction [59.74234226055964]
We present a novel approach to reconstruction of 3D cardiac motion from sparse intraoperative data.
Existing methods can accurately reconstruct 3D organ geometries from full 3D volumetric imaging.
We propose a versatile framework for reconstructing 3D motion from such partial data.
arXiv Detail & Related papers (2024-12-03T17:18:33Z) - Robotic Arm Platform for Multi-View Image Acquisition and 3D Reconstruction in Minimally Invasive Surgery [40.55055153469741]
This work introduces a robotic arm platform for efficient multi-view image acquisition and precise 3D reconstruction in Minimally invasive surgery settings.
We adapted a laparoscope to a robotic arm and captured ex-vivo images of several ovine organs across varying lighting conditions.
We employed recently released learning-based feature matchers combined with COLMAP to produce our reconstructions.
arXiv Detail & Related papers (2024-10-15T15:42:30Z) - SurgPointTransformer: Vertebrae Shape Completion with RGB-D Data [0.0]
This study introduces an alternative, radiation-free approach for reconstructing the 3D spine anatomy using RGB-D data.
We introduce SurgPointTransformer, a shape completion approach for surgical applications that can accurately reconstruct the unexposed spine regions from sparse observations of the exposed surface.
Our method significantly outperforms the state-of-the-art baselines, achieving an average Chamfer Distance of 5.39, an F-Score of 0.85, an Earth Mover's Distance of 0.011, and a Signal-to-Noise Ratio of 22.90 dB.
arXiv Detail & Related papers (2024-10-02T11:53:28Z) - SALVE: A 3D Reconstruction Benchmark of Wounds from Consumer-grade Videos [20.69257610322339]
This paper presents a study on 3D wound reconstruction from consumer-grade videos.
We introduce the SALVE dataset, comprising video recordings of realistic wound phantoms captured with different cameras.
We assess the accuracy and precision of state-of-the-art methods for 3D reconstruction, ranging from traditional photogrammetry pipelines to advanced neural rendering approaches.
arXiv Detail & Related papers (2024-07-29T02:34:51Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - Domain adaptation strategies for 3D reconstruction of the lumbar spine using real fluoroscopy data [9.21828361691977]
This study tackles key obstacles in adopting surgical navigation in orthopedic surgeries.
It shows an approach for generating 3D anatomical models of the spine from only a few fluoroscopic images.
It achieved an 84% F1 score, matching the accuracy of our previous synthetic data-based research.
arXiv Detail & Related papers (2024-01-29T10:22:45Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices [78.20154723650333]
High-quality 3D ground-truth shapes are critical for 3D object reconstruction evaluation.
We introduce a novel multi-view RGBD dataset captured using a mobile device.
We obtain precise 3D ground-truth shape without relying on high-end 3D scanners.
arXiv Detail & Related papers (2023-03-03T14:02:50Z) - CNN-based real-time 2D-3D deformable registration from a single X-ray
projection [2.1198879079315573]
This paper presents a method for real-time 2D-3D non-rigid registration using a single fluoroscopic image.
A dataset composed of displacement fields and 2D projections of the anatomy is generated from a preoperative scan.
A neural network is trained to recover the unknown 3D displacement field from a single projection image.
arXiv Detail & Related papers (2022-12-15T09:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.