Fine Tuning without Catastrophic Forgetting via Selective Low Rank Adaptation
- URL: http://arxiv.org/abs/2501.15377v1
- Date: Sun, 26 Jan 2025 03:22:22 GMT
- Title: Fine Tuning without Catastrophic Forgetting via Selective Low Rank Adaptation
- Authors: Reza Akbarian Bafghi, Carden Bagwell, Avinash Ravichandran, Ashish Shrivastava, Maziar Raissi,
- Abstract summary: Fine-tuning can reduce robustness to distribution shifts, impacting out-of-distribution (OOD) performance.
We propose a parameter-efficient fine-tuning (PEFT) method, using an indicator function to selectively activate Low-Rank Adaptation (LoRA) blocks.
We demonstrate that effective fine-tuning can be achieved with as few as 5% of active blocks, substantially improving efficiency.
- Score: 13.084333776247743
- License:
- Abstract: Adapting deep learning models to new domains often requires computationally intensive retraining and risks catastrophic forgetting. While fine-tuning enables domain-specific adaptation, it can reduce robustness to distribution shifts, impacting out-of-distribution (OOD) performance. Pre-trained zero-shot models like CLIP offer strong generalization but may suffer degraded robustness after fine-tuning. Building on Task Adaptive Parameter Sharing (TAPS), we propose a simple yet effective extension as a parameter-efficient fine-tuning (PEFT) method, using an indicator function to selectively activate Low-Rank Adaptation (LoRA) blocks. Our approach minimizes knowledge loss, retains its generalization strengths under domain shifts, and significantly reduces computational costs compared to traditional fine-tuning. We demonstrate that effective fine-tuning can be achieved with as few as 5\% of active blocks, substantially improving efficiency. Evaluations on pre-trained models such as CLIP and DINO-ViT demonstrate our method's broad applicability and effectiveness in maintaining performance and knowledge retention.
Related papers
- Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models [14.68920095399595]
sparsity-based PEFT (SPEFT) introduces trainable sparse adaptations to the weight matrices in the model.
We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies.
Our work challenges the notion that complexity is necessary for effective PEFT.
arXiv Detail & Related papers (2024-12-18T04:14:35Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)
Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.
We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting [10.559392015748989]
We show that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance.
Our results demonstrate that using the Kronecker-factored approximation produces a better preservation of the pre-training knowledge than the diagonal ones.
arXiv Detail & Related papers (2024-02-19T15:26:19Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.