論文の概要: Diffusion-based Hierarchical Negative Sampling for Multimodal Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2501.15393v1
- Date: Sun, 26 Jan 2025 04:20:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:40.596918
- Title: Diffusion-based Hierarchical Negative Sampling for Multimodal Knowledge Graph Completion
- Title(参考訳): 拡散に基づく多モード知識グラフ補完のための階層的負サンプリング
- Authors: Guanglin Niu, Xiaowei Zhang,
- Abstract要約: マルチモーダル知識グラフ補完(MMKGC)は、マルチモーダル知識グラフにおける不足知識の重要な問題に対処することを目的としている。
従来のアプローチでは、多モーダル情報の活用を無視して、多様で高品質な負の三重項を生成する。
本稿では,MMKGCタスクに適した拡散型階層的負サンプリング手法を提案する。
- 参考スコア(独自算出の注目度): 6.24078177211832
- License:
- Abstract: Multimodal Knowledge Graph Completion (MMKGC) aims to address the critical issue of missing knowledge in multimodal knowledge graphs (MMKGs) for their better applications. However, both the previous MMGKC and negative sampling (NS) approaches ignore the employment of multimodal information to generate diverse and high-quality negative triples from various semantic levels and hardness levels, thereby limiting the effectiveness of training MMKGC models. Thus, we propose a novel Diffusion-based Hierarchical Negative Sampling (DHNS) scheme tailored for MMKGC tasks, which tackles the challenge of generating high-quality negative triples by leveraging a Diffusion-based Hierarchical Embedding Generation (DiffHEG) that progressively conditions on entities and relations as well as multimodal semantics. Furthermore, we develop a Negative Triple-Adaptive Training (NTAT) strategy that dynamically adjusts training margins associated with the hardness level of the synthesized negative triples, facilitating a more robust and effective learning procedure to distinguish between positive and negative triples. Extensive experiments on three MMKGC benchmark datasets demonstrate that our framework outperforms several state-of-the-art MMKGC models and negative sampling techniques, illustrating the effectiveness of our DHNS for training MMKGC models. The source codes and datasets of this paper are available at https://github.com/ngl567/DHNS.
- Abstract(参考訳): MMKGC (Multimodal Knowledge Graph Completion) は、Multimodal Knowledge Graphs (MMKG) における欠落した知識の問題点に対処することを目的としている。
しかし、従来のMMGKCと負サンプリング(NS)の両方のアプローチはマルチモーダル情報の利用を無視し、様々な意味レベルと硬度レベルから多彩で高品質な負の三重項を生成するため、MMKGCモデルのトレーニングの有効性を制限している。
そこで本稿では,MMKGCタスクに適した拡散型階層型負サンプリング(Hyerarchical Negative Smpling, DHNS)手法を提案する。
さらに、合成した負三重項の硬度レベルに関連するトレーニングマージンを動的に調整し、正三重項と負三重項を区別するためのより堅牢で効果的な学習手順を容易にする、負三重項適応訓練(NTAT)戦略を開発した。
3つのMMKGCベンチマークデータセットの大規模な実験により、我々のフレームワークはいくつかの最先端のMMKGCモデルと負のサンプリング技術より優れており、DHNSがMMKGCモデルのトレーニングに有効であることを実証した。
本論文のソースコードとデータセットはhttps://github.com/ngl567/DHNSで公開されている。
関連論文リスト
- Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning [37.54523122932728]
大規模言語モデル(LLM)を用いたパイプラインベースのデータ拡張手法を提案する。
データ多様性の低い問題に対処するため、私たちのパイプラインは知識グラフ(KG)を使用してエンティティや量を取り出す。
高いデータノイズに対処するため、GCSEモデルは偽硬陰性サンプルの影響を制限するためにガウス分解関数を使用する。
論文 参考訳(メタデータ) (2024-09-19T16:29:58Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Unleashing the Power of Imbalanced Modality Information for Multi-modal
Knowledge Graph Completion [40.86196588992357]
マルチモーダル知識グラフ補完(MMKGC)は、マルチモーダル知識グラフの欠落三重項を予測することを目的としている。
適応型マルチモーダルフュージョン・モダリティ・アディショナル・トレーニング(AdaMF-MAT)を提案し,不均衡なモダリティ情報のパワーを解き放つ。
提案手法はMMKGCモデルとトレーニング戦略の共同設計であり,近年のMMKGC手法を上回りうる。
論文 参考訳(メタデータ) (2024-02-22T05:48:03Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
高次元データに基づくエネルギーベースモデル(EBM)の訓練は、困難かつ時間を要する可能性がある。
EBMと、GANや拡散モデルのような他の生成フレームワークとの間には、サンプル品質に顕著なギャップがある。
本研究では,協調拡散回復可能性 (CDRL) を提案する。
論文 参考訳(メタデータ) (2023-09-10T22:05:24Z) - Knowledge Graph Completion with Pre-trained Multimodal Transformer and
Twins Negative Sampling [13.016173217017597]
本稿では,VBKGC(VisualBERT-enhanced Knowledge Graph Completion Model)を提案する。
VBKGCは、エンティティの深く融合したマルチモーダル情報をキャプチャし、それらをKGCモデルに統合することができる。
リンク予測タスクにおいて,VBKGCの優れた性能を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-09-15T06:50:31Z) - 3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech
recognition [31.992543274210835]
我々は、ASRタスクのさらなる改善を実現するために、いくつかのアプローチを特定し、統合する。
特に、マルチロスは共同CTC/AED損失を指し、マルチパスはMixture-of-Experts(MoE)アーキテクチャを表す。
WenetSpeechデータセットを用いて提案手法の評価を行い,提案手法がCERの相対的改善を12.2%-17.6%に与えることを示す。
論文 参考訳(メタデータ) (2022-04-07T03:10:49Z) - Intermediate Layers Matter in Momentum Contrastive Self Supervised
Learning [1.933681537640272]
自己教師付き学習において,画像の2つの拡張版を中間層で表現することで,モーメントコントラスト(MoCo)法の改善が期待できることを示す。
特徴類似性分析とレイヤワイズ探索を用いて,新しい手法を用いて学習したモデルを分析する。
論文 参考訳(メタデータ) (2021-10-27T22:40:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
既存のコントラスト学習法は、非常に低い学習効率に苦しむ。
アンダークラスタリングとオーバークラスタリングの問題は、学習効率の大きな障害である。
中央三重項損失を用いた新しい自己監督学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-18T07:47:10Z) - Reinforced Negative Sampling over Knowledge Graph for Recommendation [106.07209348727564]
我々は、高品質なネガティブを探索する強化学習エージェントとして機能する新しい負サンプリングモデル、知識グラフポリシーネットワーク(kgPolicy)を開発した。
kgPolicyは、ターゲットのポジティブなインタラクションからナビゲートし、知識を意識したネガティブなシグナルを適応的に受信し、最終的にはリコメンダをトレーニングする潜在的なネガティブなアイテムを生成する。
論文 参考訳(メタデータ) (2020-03-12T12:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。