AdvSwap: Covert Adversarial Perturbation with High Frequency Info-swapping for Autonomous Driving Perception
- URL: http://arxiv.org/abs/2502.08374v1
- Date: Wed, 12 Feb 2025 13:05:35 GMT
- Title: AdvSwap: Covert Adversarial Perturbation with High Frequency Info-swapping for Autonomous Driving Perception
- Authors: Yuanhao Huang, Qinfan Zhang, Jiandong Xing, Mengyue Cheng, Haiyang Yu, Yilong Ren, Xiao Xiong,
- Abstract summary: This paper introduces a novel adversarial attack method, AdvSwap, which creatively utilizes wavelet-based high-frequency information swapping.
The scheme effectively removes the original label data and incorporates the guidance image data, producing concealed and robust adversarial samples.
The generates adversarial samples are also difficult to perceive by humans and algorithms.
- Score: 14.326474757036925
- License:
- Abstract: Perception module of Autonomous vehicles (AVs) are increasingly susceptible to be attacked, which exploit vulnerabilities in neural networks through adversarial inputs, thereby compromising the AI safety. Some researches focus on creating covert adversarial samples, but existing global noise techniques are detectable and difficult to deceive the human visual system. This paper introduces a novel adversarial attack method, AdvSwap, which creatively utilizes wavelet-based high-frequency information swapping to generate covert adversarial samples and fool the camera. AdvSwap employs invertible neural network for selective high-frequency information swapping, preserving both forward propagation and data integrity. The scheme effectively removes the original label data and incorporates the guidance image data, producing concealed and robust adversarial samples. Experimental evaluations and comparisons on the GTSRB and nuScenes datasets demonstrate that AdvSwap can make concealed attacks on common traffic targets. The generates adversarial samples are also difficult to perceive by humans and algorithms. Meanwhile, the method has strong attacking robustness and attacking transferability.
Related papers
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
We propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility.
Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness.
arXiv Detail & Related papers (2024-06-16T10:38:11Z) - Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data.
New attacks based on generative models with imbalanced and anisotropic noise patterns evade detection.
We propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting unseen gradient-based, generative-model-based, and physical adversarial attacks.
arXiv Detail & Related papers (2024-05-25T13:34:16Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
We introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets)
We balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack.
Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods.
arXiv Detail & Related papers (2024-01-06T03:03:52Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Modelling Adversarial Noise for Adversarial Defense [96.56200586800219]
adversarial defenses typically focus on exploiting adversarial examples to remove adversarial noise or train an adversarially robust target model.
Motivated by that the relationship between adversarial data and natural data can help infer clean data from adversarial data to obtain the final correct prediction.
We study to model adversarial noise to learn the transition relationship in the label space for using adversarial labels to improve adversarial accuracy.
arXiv Detail & Related papers (2021-09-21T01:13:26Z) - On Procedural Adversarial Noise Attack And Defense [2.5388455804357952]
adversarial examples would inveigle neural networks to make prediction errors with small per- turbations on the input images.
In this paper, we propose two universal adversarial perturbation (UAP) generation methods based on procedural noise functions.
Without changing the semantic representations, the adversarial examples generated via our methods show superior performance on the attack.
arXiv Detail & Related papers (2021-08-10T02:47:01Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.