論文の概要: The Potential of Large Language Models in Supply Chain Management: Advancing Decision-Making, Efficiency, and Innovation
- arxiv url: http://arxiv.org/abs/2501.15411v1
- Date: Sun, 26 Jan 2025 05:41:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:07.678140
- Title: The Potential of Large Language Models in Supply Chain Management: Advancing Decision-Making, Efficiency, and Innovation
- Title(参考訳): サプライチェーンマネジメントにおける大規模言語モデルの可能性:意思決定・効率・革新の促進
- Authors: Raha Aghaei, Ali A. Kiaei, Mahnaz Boush, Javad Vahidi, Zeynab Barzegar, Mahan Rofoosheh,
- Abstract要約: 大規模言語モデル(LLM)とサプライチェーン管理(SCM)の統合は、業界に革命をもたらしている。
本稿では、需要予測、在庫管理、サプライヤー関係管理、物流最適化など、LCMが様々なSCM機能に与える影響について検討する。
バイアス軽減とデータ保護を含む倫理的考慮は、公正で透明なAIプラクティスを保証するために考慮される。
- 参考スコア(独自算出の注目度): 0.5497663232622965
- License:
- Abstract: The integration of large language models (LLMs) into supply chain management (SCM) is revolutionizing the industry by improving decision-making, predictive analytics, and operational efficiency. This white paper explores the transformative impact of LLMs on various SCM functions, including demand forecasting, inventory management, supplier relationship management, and logistics optimization. By leveraging advanced data analytics and real-time insights, LLMs enable organizations to optimize resources, reduce costs, and improve responsiveness to market changes. Key findings highlight the benefits of integrating LLMs with emerging technologies such as IoT, blockchain, and robotics, which together create smarter and more autonomous supply chains. Ethical considerations, including bias mitigation and data protection, are taken into account to ensure fair and transparent AI practices. In addition, the paper discusses the need to educate the workforce on how to manage new AI-driven processes and the long-term strategic benefits of adopting LLMs. Strategic recommendations for SCM professionals include investing in high-quality data management, promoting cross-functional collaboration, and aligning LLM initiatives with overall business goals. The findings highlight the potential of LLMs to drive innovation, sustainability, and competitive advantage in the ever-changing supply chain management landscape.
- Abstract(参考訳): 大規模言語モデル(LLM)をサプライチェーン管理(SCM)に統合することは、意思決定、予測分析、運用効率を改善することで業界に革命をもたらしている。
本稿では、需要予測、在庫管理、サプライヤー関係管理、物流最適化など、LCMが様々なSCM機能に与える影響について検討する。
高度なデータ分析とリアルタイム洞察を活用することで、LCMは組織がリソースを最適化し、コストを削減し、市場の変化に対する応答性を改善することができる。
主要な発見は、IoTやブロックチェーン、ロボティクスといった新興技術とLLMを統合することのメリットを強調している。
バイアス軽減とデータ保護を含む倫理的考慮は、公正で透明なAIプラクティスを保証するために考慮される。
さらに、新しいAI駆動プロセスの管理方法とLLMを採用する長期的な戦略的メリットについて、労働力の教育の必要性について論じる。
SCMプロフェッショナルのための戦略的勧告には、高品質なデータ管理への投資、クロスファンクショナルなコラボレーションの促進、LLMイニシアティブの全体的なビジネス目標との整合性などが含まれる。
この調査結果は、イノベーション、持続可能性、競争上の優位性をもたらすLLMの可能性を、変わらず変化するサプライチェーン管理の現場で強調している。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Large Language Models for Manufacturing [41.12098478080648]
大規模言語モデル(LLM)は製造業を変革する可能性があり、プロセスを最適化し、効率を改善し、革新を促進する新しい機会を提供する。
本稿では,LLMを製造分野に統合し,製造のさまざまな側面を自動化・拡張する可能性に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-28T18:13:47Z) - Large Language Models for Knowledge-Free Network Management: Feasibility Study and Opportunities [36.70339455624253]
本稿では,大規模言語モデル(LLM)と呼ばれる基礎モデルの力による,知識のない新しいネットワーク管理パラダイムについて述べる。
LLMは、最小限のシステム情報を含む入力プロンプトから重要なコンテキストを理解することができ、完全に新しいタスクであっても顕著な推論性能を提供する。
計算結果は,知識のないLLMが既存の知識ベース最適化アルゴリズムに匹敵する性能を達成できることを検証した。
論文 参考訳(メタデータ) (2024-10-06T07:42:23Z) - Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions [0.0]
機械学習技術は、現実世界の市場シナリオへの展開が増えている。
マルチコモディティ市場において,大規模言語モデル(LLM)が自律エージェントとして展開する際の戦略行動について検討する。
論文 参考訳(メタデータ) (2024-09-19T20:10:40Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
本稿では,サプライチェーンの可視性を高めるために,知識グラフ(KG)と大規模言語モデル(LLM)を活用した新しいフレームワークを提案する。
我々のゼロショットLPM駆動アプローチは、様々な公共情報源からのサプライチェーン情報の抽出を自動化する。
NERとREタスクの精度が高く、複雑な多層供給ネットワークを理解する効果的なツールを提供する。
論文 参考訳(メタデータ) (2024-08-05T17:11:29Z) - InvAgent: A Large Language Model based Multi-Agent System for Inventory Management in Supply Chains [0.0]
本研究では,大規模言語モデル (LLM) を用いて複数エージェントの在庫管理システムを管理する手法を提案する。
我々のモデルであるInvAgentはレジリエンスを高め、サプライチェーンネットワーク全体の効率を向上させる。
論文 参考訳(メタデータ) (2024-07-16T04:55:17Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - The Synergy Between Optimal Transport Theory and Multi-Agent
Reinforcement Learning [53.88428902493129]
本稿では、最適輸送理論とマルチエージェント強化学習(MARL)の統合について検討する。
OTがMARLに影響を与える5つの重要な領域がある。
本稿では,OTとMARLの相乗効果がスケーラビリティ問題にどのように対処できるかを述べる。
論文 参考訳(メタデータ) (2024-01-18T19:34:46Z) - FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and
Character Design [11.913409501633616]
textscFinMemは、金融上の意思決定のために考案された新しいLLMベースのエージェントフレームワークである。
textscFinMemのメモリモジュールは、人間のトレーダーの認知構造と密接に一致し、堅牢な解釈性を提供する。
このフレームワークは、エージェントが専門知識を自己開発し、新しい投資方法にアジャイルに反応し、取引決定を継続的に洗練することを可能にする。
論文 参考訳(メタデータ) (2023-11-23T00:24:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。