An Aspect Performance-aware Hypergraph Neural Network for Review-based Recommendation
- URL: http://arxiv.org/abs/2501.15429v1
- Date: Sun, 26 Jan 2025 07:10:22 GMT
- Title: An Aspect Performance-aware Hypergraph Neural Network for Review-based Recommendation
- Authors: Junrui Liu, Tong Li, Di Wu, Zifang Tang, Yuan Fang, Zhen Yang,
- Abstract summary: We propose an aspect performance-aware hypergraph neural network (APH) for the review-based recommendation.
APH learns the performance of items from the conflicting sentiment polarity of user reviews.
Experiments on six real-world datasets demonstrate that APH improves MSE, Precision@5, and Recall@5 by an average of 2.30%, 4.89%, and 1.60% over the best baseline.
- Score: 13.327249917384144
- License:
- Abstract: Online reviews allow consumers to provide detailed feedback on various aspects of items. Existing methods utilize these aspects to model users' fine-grained preferences for specific item features through graph neural networks. We argue that the performance of items on different aspects is important for making precise recommendations, which has not been taken into account by existing approaches, due to lack of data. In this paper, we propose an aspect performance-aware hypergraph neural network (APH) for the review-based recommendation, which learns the performance of items from the conflicting sentiment polarity of user reviews. Specifically, APH comprehensively models the relationships among users, items, aspects, and sentiment polarity by systematically constructing an aspect hypergraph based on user reviews. In addition, APH aggregates aspects representing users and items by employing an aspect performance-aware hypergraph aggregation method. It aggregates the sentiment polarities from multiple users by jointly considering user preferences and the semantics of their sentiments, determining the weights of sentiment polarities to infer the performance of items on various aspects. Such performances are then used as weights to aggregate neighboring aspects. Experiments on six real-world datasets demonstrate that APH improves MSE, Precision@5, and Recall@5 by an average of 2.30%, 4.89%, and 1.60% over the best baseline. The source code and data are available at https://github.com/dianziliu/APH.
Related papers
- Were You Helpful -- Predicting Helpful Votes from Amazon Reviews [0.0]
This project investigates factors that influence the perceived helpfulness of Amazon product reviews through machine learning techniques.
We identify key metadata characteristics that serve as strong predictors of review helpfulness.
This insight suggests that contextual and user-behavioral factors may be more indicative of review helpfulness than the linguistic content itself.
arXiv Detail & Related papers (2024-12-03T22:38:58Z) - Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation [26.214148426964794]
We introduce new datasets and evaluation methods that focus on the users' sentiments.
We construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews.
We propose to evaluate systems based on whether the generated explanations align well with the users' sentiments.
arXiv Detail & Related papers (2024-10-17T06:15:00Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - Hypergrah-Enhanced Dual Convolutional Network for Bundle Recommendation [29.674627482358623]
We develop a unified model for bundle recommendation, termed hypergraph-enhanced dual convolutional neural network (HED)
Our approach is characterized by two key aspects. Firstly, we construct a complete hypergraph to capture interaction dynamics among users, items, and bundles. Secondly, we incorporate U-B interaction information to enhance the information representation derived from users and bundle embedding vectors.
arXiv Detail & Related papers (2023-12-18T08:35:10Z) - Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
Existing works assume the available POI check-ins reported by users are the ground-truth depiction of user behaviors.
In real application scenarios, the check-in data can be rather unreliable due to both subjective and objective causes.
We propose a Bayes-enhanced Multi-view Attention Network to address the uncertainty factors of the user check-ins.
arXiv Detail & Related papers (2023-11-01T12:47:38Z) - Topology-aware Debiased Self-supervised Graph Learning for
Recommendation [6.893289671937124]
We propose Topology-aware De Self-supervised Graph Learning ( TDSGL) for recommendation.
TDSGL constructs contrastive pairs according to the semantic similarity between users (items)
Our results show that the proposed model outperforms the state-of-the-art models significantly on three public datasets.
arXiv Detail & Related papers (2023-10-24T14:16:19Z) - DisenHCN: Disentangled Hypergraph Convolutional Networks for
Spatiotemporal Activity Prediction [53.76601630407521]
We propose a hypergraph network model called DisenHCN to bridge the gaps in existing solutions.
In particular, we first unify fine-grained user similarity and the complex matching between user preferences andtemporal activity into a heterogeneous hypergraph.
We then disentangle the user representations into different aspects (location-aware, time-aware, and activity-aware) and aggregate corresponding aspect's features on the constructed hypergraph.
arXiv Detail & Related papers (2022-08-14T06:51:54Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - Hybrid Deep Embedding for Recommendations with Dynamic Aspect-Level
Explanations [60.78696727039764]
We propose a novel model called Hybrid Deep Embedding for aspect-based explainable recommendations.
The main idea of HDE is to learn the dynamic embeddings of users and items for rating prediction.
As the aspect preference/quality of users/items is learned automatically, HDE is able to capture the impact of aspects that are not mentioned in reviews of a user or an item.
arXiv Detail & Related papers (2020-01-18T13:16:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.