論文の概要: Evaluating Simple Debiasing Techniques in RoBERTa-based Hate Speech Detection Models
- arxiv url: http://arxiv.org/abs/2501.15430v1
- Date: Sun, 26 Jan 2025 07:18:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:19.833957
- Title: Evaluating Simple Debiasing Techniques in RoBERTa-based Hate Speech Detection Models
- Title(参考訳): RoBERTaを用いたヘイト音声検出モデルにおける簡易脱バイアス手法の評価
- Authors: Diana Iftimie, Erik Zinn,
- Abstract要約: AAEテキストは、非AEテキストと比較して、虐待的/憎悪的として誤分類されることが多い。
この種の格差に対応するため、過去には単純な脱バイアス技術が開発されてきた。
本稿では,RoBERTaを用いたエンコーダの範囲内でこれらの手法を適用し,評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The hate speech detection task is known to suffer from bias against African American English (AAE) dialect text, due to the annotation bias present in the underlying hate speech datasets used to train these models. This leads to a disparity where normal AAE text is more likely to be misclassified as abusive/hateful compared to non-AAE text. Simple debiasing techniques have been developed in the past to counter this sort of disparity, and in this work, we apply and evaluate these techniques in the scope of RoBERTa-based encoders. Experimental results suggest that the success of these techniques depends heavily on the methods used for training dataset construction, but with proper consideration of representation bias, they can reduce the disparity seen among dialect subgroups on the hate speech detection task.
- Abstract(参考訳): ヘイトスピーチ検出タスクは、これらのモデルをトレーニングするために使用されるヘイトスピーチデータセットにあるアノテーションバイアスのため、アフリカ系アメリカ人の英語(AAE)方言のテキストに対するバイアスで知られている。
これは、通常のAAEテキストが非AAEテキストに比べて虐待的/憎悪的に分類される傾向にあるという格差につながる。
本研究では,RoBERTaを用いたエンコーダの範囲内で,これらの手法を適用し,評価する。
実験結果から,これらの手法の成功はデータセット構築の訓練方法に大きく依存することが示されたが,表現バイアスを適切に考慮すれば,ヘイトスピーチ検出タスクにおける方言サブグループ間の差異を低減することができる。
関連論文リスト
- Contextualized Automatic Speech Recognition with Attention-Based Bias
Phrase Boosted Beam Search [44.94458898538114]
本稿では、編集可能なフレーズリストを用いてカスタマイズ可能な、注意に基づくコンテキストバイアス手法を提案する。
提案手法は、入力音声データ中のバイアスフレーズを検出するために、バイアスフレーズインデックス損失と特別なトークンを組み合わせることで効果的に訓練することができる。
論文 参考訳(メタデータ) (2024-01-19T01:36:07Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
ASRの誤り訂正に外部の大規模言語モデル(LLM)を利用する最初のオープンソースベンチマークを導入する。
提案したベンチマークには、334,000組以上のN-best仮説を含む新しいデータセットHyPoradise (HP)が含まれている。
合理的なプロンプトと生成能力を持つLLMは、N-bestリストに欠けているトークンを修正できる。
論文 参考訳(メタデータ) (2023-09-27T14:44:10Z) - Combating high variance in Data-Scarce Implicit Hate Speech
Classification [0.0]
我々は,最先端の性能を実現する新しいRoBERTaモデルを開発した。
本稿では,様々な最適化手法と正規化手法を探求し,最先端性能を実現するRoBERTaベースの新しいモデルを開発する。
論文 参考訳(メタデータ) (2022-08-29T13:45:21Z) - APEACH: Attacking Pejorative Expressions with Analysis on
Crowd-Generated Hate Speech Evaluation Datasets [4.034948808542701]
APEACHは、特定されていないユーザによって生成されるヘイトスピーチの収集を可能にする方法である。
ヘイトスピーチの群集生成を制御し,最小限のポストラベルのみを追加することにより,ヘイトスピーチ検出の一般化と公平な評価を可能にするコーパスを作成する。
論文 参考訳(メタデータ) (2022-02-25T02:04:38Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Speaker Embedding-aware Neural Diarization for Flexible Number of
Speakers with Textual Information [55.75018546938499]
本稿では,話者埋め込み認識型ニューラルダイアリゼーション(SEND)手法を提案する。
本手法は,ターゲット話者の音声活動検出よりも低いダイアリゼーション誤差率を実現する。
論文 参考訳(メタデータ) (2021-11-28T12:51:04Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
バイアスド・アソシエーションは、有害な言語を検出するための分類器の開発において課題となっている。
我々は最近,有害な言語検出に適用されたテキスト分類データセットとモデルに対するデバイアス法について検討した。
我々の焦点は語彙(例えば、誓い言葉、スラー、アイデンティティの言及)と方言マーカー(特にアフリカ系アメリカ人の英語)である。
論文 参考訳(メタデータ) (2021-01-29T22:03:17Z) - The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets [58.53269361115974]
バイアスモデルを検出する診断データセットは、自然言語処理におけるバイアス低減の重要な前提条件である。
収集されたデータの望ましくないパターンは、そのようなテストを誤ったものにします。
実験データにおけるそのようなパターンに対処するために, 実験サンプルを重み付けする理論的基礎的手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T16:50:13Z) - Hate Speech Detection and Racial Bias Mitigation in Social Media based
on BERT model [1.9336815376402716]
本稿では,既存の学習済み言語モデルであるBERTに基づくヘイトスピーチ検出のための伝達学習手法を提案する。
提案したモデルは、人種差別、セクシズム、憎悪、攻撃的なコンテンツをTwitter上で注釈付けした2つの公開データセット上で評価する。
論文 参考訳(メタデータ) (2020-08-14T16:47:25Z) - Demoting Racial Bias in Hate Speech Detection [39.376886409461775]
現在のヘイトスピーチデータセットには、アノテーターの毒性に対する認識とアフリカ系アメリカ人英語(AAE)の信号との間に相関がある。
本稿では,このバイアスを軽減するために,敵対的訓練を用いて,有害な文章の検出を学習するヘイトスピーチ分類器を導入する。
ヘイトスピーチデータセットとAEデータセットの実験結果から,本手法はヘイトスピーチ分類の性能を最小限に抑えつつ,AAEテキストの偽陽性率を大幅に低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-25T17:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。