論文の概要: Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
- arxiv url: http://arxiv.org/abs/2501.15461v1
- Date: Sun, 26 Jan 2025 09:09:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:27.048935
- Title: Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
- Title(参考訳): Mambaベースのグラフ畳み込みネットワーク:選択状態空間でオーバースムーシングに取り組む
- Authors: Xin He, Yili Wang, Wenqi Fan, Xu Shen, Xin Juan, Rui Miao, Xin Wang,
- Abstract要約: 本稿では,Mambaパラダイムからインスピレーションを得た新しいグラフ畳み込みアーキテクチャであるMbaGCNを紹介する。
MbaGCNは、Message Aggregation Layer、Selective State Space Transition Layer、Node State Prediction Layerという3つの重要なコンポーネントで構成されるGNNの新しいバックボーンを提供する。
- 参考スコア(独自算出の注目度): 33.677431350509224
- License:
- Abstract: Graph Neural Networks (GNNs) have shown great success in various graph-based learning tasks. However, it often faces the issue of over-smoothing as the model depth increases, which causes all node representations to converge to a single value and become indistinguishable. This issue stems from the inherent limitations of GNNs, which struggle to distinguish the importance of information from different neighborhoods. In this paper, we introduce MbaGCN, a novel graph convolutional architecture that draws inspiration from the Mamba paradigm-originally designed for sequence modeling. MbaGCN presents a new backbone for GNNs, consisting of three key components: the Message Aggregation Layer, the Selective State Space Transition Layer, and the Node State Prediction Layer. These components work in tandem to adaptively aggregate neighborhood information, providing greater flexibility and scalability for deep GNN models. While MbaGCN may not consistently outperform all existing methods on each dataset, it provides a foundational framework that demonstrates the effective integration of the Mamba paradigm into graph representation learning. Through extensive experiments on benchmark datasets, we demonstrate that MbaGCN paves the way for future advancements in graph neural network research.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なグラフベースの学習タスクで大きな成功を収めている。
しかし、モデル深度が増加するにつれて過度なスムース化の問題に直面し、全てのノード表現が単一の値に収束し、区別不能になる。
この問題は、異なる地域からの情報の重要性を区別するのに苦労するGNNの固有の制限に起因している。
本稿では,MbaGCNという新しいグラフ畳み込みアーキテクチャについて紹介する。
MbaGCNは、Message Aggregation Layer、Selective State Space Transition Layer、Node State Prediction Layerという3つの重要なコンポーネントで構成されるGNNの新しいバックボーンを提供する。
これらのコンポーネントは、周辺情報を適応的に集約するために、タンデムで動作し、深いGNNモデルの柔軟性とスケーラビリティを提供する。
MbaGCNはデータセット上の既存のメソッドを一貫して上回るわけではないが、Mambaパラダイムをグラフ表現学習に効果的に統合する基盤となるフレームワークを提供する。
ベンチマークデータセットに関する広範な実験を通じて、MbaGCNがグラフニューラルネットワーク研究の今後の進歩の道を開くことを実証する。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - A Model-Agnostic Graph Neural Network for Integrating Local and Global Information [2.6164652182042505]
グラフニューラルネットワーク(GNN)は、さまざまなグラフにフォーカスしたタスクにおいて、有望なパフォーマンスを実現している。
既存のGNNには、ブラックボックスの性質による結果の解釈可能性の欠如と、さまざまな順序の表現を学べないという2つの大きな制限がある。
本稿では,様々な順序の情報を効果的に統合し,高次隣人から知識を抽出し,影響力のあるコンパクトグラフ構造を同定して有意義かつ解釈可能な結果を提供する,モデル非依存型グラフニューラルネットワーク(MaGNet)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-23T19:07:03Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Principal Neighbourhood Aggregation for Graph Nets [4.339839287869653]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ上の様々な予測タスクに有効なモデルであることが示されている。
表現力に関する最近の研究は同型タスクと可算特徴空間に焦点を当てている。
我々はこの理論フレームワークを拡張し、現実世界の入力領域で定期的に発生する連続的な特徴を含める。
論文 参考訳(メタデータ) (2020-04-12T23:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。