Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
- URL: http://arxiv.org/abs/2501.15522v1
- Date: Sun, 26 Jan 2025 13:38:12 GMT
- Title: Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
- Authors: Yueyang Wang, Kejun Tang, Xili Wang, Xiaoliang Wan, Weiqing Ren, Chao Yang,
- Abstract summary: The committor function is central to investigating rare but important events in molecular simulations.
We propose an efficient framework to generate data points in the transition state region that helps train neural networks to approximate the committor function.
- Score: 4.86462659735635
- License:
- Abstract: The committor functions are central to investigating rare but important events in molecular simulations. It is known that computing the committor function suffers from the curse of dimensionality. Recently, using neural networks to estimate the committor function has gained attention due to its potential for high-dimensional problems. Training neural networks to approximate the committor function needs to sample transition data from straightforward simulations of rare events, which is very inefficient. The scarcity of transition data makes it challenging to approximate the committor function. To address this problem, we propose an efficient framework to generate data points in the transition state region that helps train neural networks to approximate the committor function. We design a Deep Adaptive Sampling method for TRansition paths (DASTR), where deep generative models are employed to generate samples to capture the information of transitions effectively. In particular, we treat a non-negative function in the integrand of the loss functional as an unnormalized probability density function and approximate it with the deep generative model. The new samples from the deep generative model are located in the transition state region and fewer samples are located in the other region. This distribution provides effective samples for approximating the committor function and significantly improves the accuracy. We demonstrate the effectiveness of the proposed method through both simulations and realistic examples.
Related papers
- Rolling bearing fault diagnosis method based on generative adversarial enhanced multi-scale convolutional neural network model [7.600902237804825]
A rolling bearing fault diagnosis method based on generative adversarial enhanced multi-scale convolutional neural network model is proposed.
Compared with ResNet method, the experimental results show that the proposed method has better generalization performance and anti-noise performance.
arXiv Detail & Related papers (2024-03-21T06:42:35Z) - Variational Sampling of Temporal Trajectories [39.22854981703244]
We introduce a mechanism to learn the distribution of trajectories by parameterizing the transition function $f$ explicitly as an element in a function space.
Our framework allows efficient synthesis of novel trajectories, while also directly providing a convenient tool for inference.
arXiv Detail & Related papers (2024-03-18T02:12:12Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Supervised Learning and the Finite-Temperature String Method for
Computing Committor Functions and Reaction Rates [0.0]
A central object in the computational studies of rare events is the committor function.
We show additional modifications are needed to improve the accuracy of the algorithm.
arXiv Detail & Related papers (2021-07-28T17:44:00Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.