Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization
- URL: http://arxiv.org/abs/2310.02679v3
- Date: Sat, 9 Mar 2024 21:05:43 GMT
- Title: Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization
- Authors: Dinghuai Zhang, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron Courville,
Yoshua Bengio
- Abstract summary: Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
- Score: 87.21285093582446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the problem of sampling from intractable high-dimensional density
functions, a fundamental task that often appears in machine learning and
statistics. We extend recent sampling-based approaches that leverage controlled
stochastic processes to model approximate samples from these target densities.
The main drawback of these approaches is that the training objective requires
full trajectories to compute, resulting in sluggish credit assignment issues
due to use of entire trajectories and a learning signal present only at the
terminal time. In this work, we present Diffusion Generative Flow Samplers
(DGFS), a sampling-based framework where the learning process can be tractably
broken down into short partial trajectory segments, via parameterizing an
additional "flow function". Our method takes inspiration from the theory
developed for generative flow networks (GFlowNets), allowing us to make use of
intermediate learning signals. Through various challenging experiments, we
demonstrate that DGFS achieves more accurate estimates of the normalization
constant than closely-related prior methods.
Related papers
- GLRT-Based Metric Learning for Remote Sensing Object Retrieval [19.210692452537007]
Existing CBRSOR methods neglect the utilization of global statistical information during both training and test stages.
Inspired by the Neyman-Pearson theorem, we propose a generalized likelihood ratio test-based metric learning (GLRTML) approach.
arXiv Detail & Related papers (2024-10-08T07:53:30Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - TraceMesh: Scalable and Streaming Sampling for Distributed Traces [51.08892669409318]
TraceMesh is a scalable and streaming sampler for distributed traces.
It accommodates previously unseen trace features in a unified and streamlined way.
TraceMesh outperforms state-of-the-art methods by a significant margin in both sampling accuracy and efficiency.
arXiv Detail & Related papers (2024-06-11T06:13:58Z) - Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
We develop and theoretically justify the novel Optimal Flow Matching approach.
It allows recovering the straight OT displacement for the quadratic transport in just one FM step.
The main idea of our approach is the employment of vector field for FM which are parameterized by convex functions.
arXiv Detail & Related papers (2024-03-19T19:44:54Z) - Efficient Multimodal Sampling via Tempered Distribution Flow [11.36635610546803]
We develop a new type of transport-based sampling method called TemperFlow.
Various experiments demonstrate the superior performance of this novel sampler compared to traditional methods.
We show its applications in modern deep learning tasks such as image generation.
arXiv Detail & Related papers (2023-04-08T06:40:06Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
Sampling-based approaches to Model Predictive Control (MPC) have become a cornerstone of contemporary approaches to MPC.
We propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution.
Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time.
arXiv Detail & Related papers (2022-12-05T20:35:36Z) - Learning GFlowNets from partial episodes for improved convergence and
stability [56.99229746004125]
Generative flow networks (GFlowNets) are algorithms for training a sequential sampler of discrete objects under an unnormalized target density.
Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory.
Inspired by the TD($lambda$) algorithm in reinforcement learning, we introduce subtrajectory balance or SubTB($lambda$), a GFlowNet training objective that can learn from partial action subsequences of varying lengths.
arXiv Detail & Related papers (2022-09-26T15:44:24Z) - Bootstrap Your Flow [4.374837991804085]
We develop a new flow-based training procedure, FAB (Flow AIS Bootstrap), to produce accurate approximations to complex target distributions.
We demonstrate that FAB can be used to produce accurate approximations to complex target distributions, including Boltzmann distributions, in problems where previous flow-based methods fail.
arXiv Detail & Related papers (2021-11-22T20:11:47Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
We propose a novel unsupervised learning approach to 3D shape correspondence.
We show that the proposed method significantly improves over the state-of-the-art on multiple datasets.
arXiv Detail & Related papers (2020-10-28T22:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.