論文の概要: Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
- arxiv url: http://arxiv.org/abs/2501.15688v1
- Date: Sun, 26 Jan 2025 22:23:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:12.328341
- Title: Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
- Title(参考訳): Link-Aware コンテキストを用いたトランスフォーマーに基づくマルチモーダル知識グラフ補完
- Authors: Haodi Ma, Dzmitry Kasinets, Daisy Zhe Wang,
- Abstract要約: マルチモーダル知識グラフ補完(MMKGC)は、マルチモーダル知識グラフ(MMKG)における欠落リンクの予測を目的とする。
既存のMMKGCアプローチは主に知識グラフ埋め込み(KGE)モデルを拡張している。
本稿では,トランスフォーマーをベースとしたKGEモデルと,事前学習したVLMが生成するクロスモーダルコンテキストを統合した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 3.531533402602335
- License:
- Abstract: Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.
- Abstract(参考訳): マルチモーダル知識グラフ補完(MMKGC)は、多モーダル知識グラフ(MMKG)における欠落リンクを、構造データとともに様々なモーダルからの情報を活用することによって予測することを目的としている。
既存のMMKGCアプローチは主に従来の知識グラフ埋め込み(KGE)モデルを拡張し、すべてのエンティティに埋め込みを作成する必要がある。
この結果、特に実世界のグラフにおいて、マルチモーダル情報の統合において大きなモデルサイズと非効率性が生じる。
一方、Transformerベースのモデルは知識グラフ補完(KGC)において競合性能を示した。
しかし、シングルモーダルな知識に焦点をあてることで、クロスモーダルな情報を利用する能力が制限される。
近年、大規模視覚言語モデル (VLM) は、クロスモーダルなタスクにおいて有益であるが、高い訓練コストで制約されている。
本研究では,トランスフォーマーをベースとしたKGEモデルと,事前学習したVLMが生成するクロスモーダルコンテキストを統合し,MMKGCへの適用性を拡張した新しいアプローチを提案する。
具体的には、学習済みのVLMを用いて、関連した視覚情報をエンティティとその隣人からテキストシーケンスに変換する。
次に、KGCをシーケンス・ツー・シーケンスタスクとしてフレーム化し、生成されたクロスモーダルコンテキストでモデルを微調整する。
この単純で効果的な手法は、最小限のハイパーパラメータチューニングを持つ複数の大規模データセット間での競合性能を実現しながら、従来のKGEアプローチと比較して、モデルサイズを著しく削減する。
関連論文リスト
- DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
DiffMMと呼ばれる新しいマルチモーダルグラフ拡散モデルを提案する。
本フレームワークは,モダリティを意識したグラフ拡散モデルとクロスモーダルコントラスト学習パラダイムを統合し,モダリティを意識したユーザ表現学習を改善する。
論文 参考訳(メタデータ) (2024-06-17T17:35:54Z) - Tokenization, Fusion, and Augmentation: Towards Fine-grained Multi-modal Entity Representation [51.80447197290866]
マルチモーダル知識グラフ補完(MMKGC)は、与えられた知識グラフから観測されていない知識を発見することを目的としている。
既存のMMKGCメソッドは通常、事前訓練されたモデルでマルチモーダルな特徴を抽出する。
エンティティの微細なマルチモーダル表現をトークン化し、融合し、拡張する新しいフレームワークであるMyGOを紹介します。
論文 参考訳(メタデータ) (2024-04-15T05:40:41Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
本研究では,MMKGCを実現するための包括的フレームワークNativEを提案する。
NativEは、任意のモダリティに対して適応的な融合を可能にするリレーショナル誘導デュアルアダプティブフュージョンモジュールを提案する。
提案手法を評価するために,5つのデータセットを用いたWildKGCという新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-03-28T03:04:00Z) - Noise-powered Multi-modal Knowledge Graph Representation Framework [52.95468915728721]
マルチモーダル・プレトレーニングの台頭は、統合されたマルチモーダル知識グラフ表現学習フレームワークの必要性を強調している。
モードレベルのノイズマスキングを備えたトランスフォーマーアーキテクチャを用いた新しいSNAG手法を提案する。
提案手法は10個のデータセットにまたがってSOTA性能を実現し,その汎用性を実証する。
論文 参考訳(メタデータ) (2024-03-11T15:48:43Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - MACO: A Modality Adversarial and Contrastive Framework for
Modality-missing Multi-modal Knowledge Graph Completion [18.188971531961663]
本稿では,MMKGCにおけるモダリティ欠落問題を解決するために,モダリティ対向・コントラッシブ・フレームワーク(MACO)を提案する。
MACOは、MMKGCモデルに組み込むことができる欠落したモダリティ特徴を生成するために、ジェネレータと識別器を逆さまに訓練する。
論文 参考訳(メタデータ) (2023-08-13T06:29:38Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - Multimodal Graph Transformer for Multimodal Question Answering [9.292566397511763]
本稿では,複数のモーダルをまたがる推論を必要とする質問応答タスクのための新しいマルチモーダルグラフ変換器を提案する。
マルチモーダルグラフ情報を組み込むための,グラフを包含したプラグアンドプレイ準アテンション機構を提案する。
GQA, VQAv2, MultiModalQAデータセット上のトランスフォーマーベースラインに対するマルチモーダルグラフ変換の有効性を検証する。
論文 参考訳(メタデータ) (2023-04-30T21:22:35Z) - IMKGA-SM: Interpretable Multimodal Knowledge Graph Answer Prediction via
Sequence Modeling [3.867363075280544]
マルチモーダル知識グラフリンク予測は,マルチモーダルデータに対するリンク予測タスクの精度と効率を向上させることを目的としている。
シーケンスモデリングによる解釈可能なマルチモーダル知識グラフアンサー予測(IMKGA-SM)の開発
モデルは、異なるサイズのマルチモーダルリンク予測データセットに基づいて、SOTAベースラインよりもはるかに優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-01-06T10:08:11Z) - Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge
Graph Completion [112.27103169303184]
マルチモーダル知識グラフ(MKG)は、視覚テキストの事実知識を整理する。
MKGformerは、マルチモーダルリンク予測、マルチモーダルRE、マルチモーダルNERの4つのデータセット上でSOTA性能を得ることができる。
論文 参考訳(メタデータ) (2022-05-04T23:40:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。