Renewable Energy Prediction: A Comparative Study of Deep Learning Models for Complex Dataset Analysis
- URL: http://arxiv.org/abs/2501.15731v1
- Date: Mon, 27 Jan 2025 02:10:10 GMT
- Title: Renewable Energy Prediction: A Comparative Study of Deep Learning Models for Complex Dataset Analysis
- Authors: Haibo Wang, Jun Huang, Lutfu Sua, Bahram Alidaee,
- Abstract summary: Deep learning (DL) models capture complex, nonlinear relationships in renewable energy datasets.
Seven machine learning methods, LSTM, Stacked LSTM, CNN, CNN-LSTM, Time-DistributedDistributed (TD-MLP) and Autoencoder (AE) are evaluated.
Regularization techniques such as early stopping, neuron dropout, L1 and L2 regularization are applied to address overfitting.
- Score: 6.857122511301731
- License:
- Abstract: The increasing focus on predicting renewable energy production aligns with advancements in deep learning (DL). The inherent variability of renewable sources and the complexity of prediction methods require robust approaches, such as DL models, in the renewable energy sector. DL models are preferred over traditional machine learning (ML) because they capture complex, nonlinear relationships in renewable energy datasets. This study examines key factors influencing DL technique accuracy, including sampling and hyperparameter optimization, by comparing various methods and training and test ratios within a DL framework. Seven machine learning methods, LSTM, Stacked LSTM, CNN, CNN-LSTM, DNN, Time-Distributed MLP (TD-MLP), and Autoencoder (AE), are evaluated using a dataset combining weather and photovoltaic power output data from 12 locations. Regularization techniques such as early stopping, neuron dropout, L1 and L2 regularization are applied to address overfitting. The results demonstrate that the combination of early stopping, dropout, and L1 regularization provides the best performance to reduce overfitting in the CNN and TD-MLP models with larger training set, while the combination of early stopping, dropout, and L2 regularization is the most effective to reduce the overfitting in CNN-LSTM and AE models with smaller training set.
Related papers
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a hybrid model (POD-DL) that combines proper decomposition (POD) with a long-short term memory (LSTM) layer, a convolutional autoencoder combined with a convolutional LSTM layer, and a variational autoencoder (VAE) combined with a ConvLSTM layer.
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Task Aware Modulation using Representation Learning: An Approach for Few Shot Learning in Environmental Systems [15.40286222692196]
TAM-RL is a novel framework for few-shot learning in heterogeneous systems.
We evaluate TAM-RL on two real-world environmental datasets.
arXiv Detail & Related papers (2023-10-07T07:55:22Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - An Adaptive Deep Learning Framework for Day-ahead Forecasting of
Photovoltaic Power Generation [0.8702432681310401]
This paper proposes an adaptive LSTM (AD-LSTM) model, which is a DL framework that can not only acquire general knowledge from historical data, but also dynamically learn specific knowledge from newly-arrived data.
The developed AD-LSTM model demonstrates greater forecasting capability than the offline LSTM model, particularly in the presence of concept drift.
arXiv Detail & Related papers (2021-09-28T02:39:56Z) - A Hybrid Residual Dilated LSTM end Exponential Smoothing Model for
Mid-Term Electric Load Forecasting [1.1602089225841632]
The model combines exponential smoothing (ETS), advanced Long Short-Term Memory (LSTM) and ensembling.
A simulation study performed on the monthly electricity demand time series for 35 European countries confirmed the high performance of the proposed model.
arXiv Detail & Related papers (2020-03-29T10:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.