Task Aware Modulation using Representation Learning: An Approach for Few Shot Learning in Environmental Systems
- URL: http://arxiv.org/abs/2310.04727v2
- Date: Wed, 16 Oct 2024 16:06:17 GMT
- Title: Task Aware Modulation using Representation Learning: An Approach for Few Shot Learning in Environmental Systems
- Authors: Arvind Renganathan, Rahul Ghosh, Ankush Khandelwal, Vipin Kumar,
- Abstract summary: TAM-RL is a novel framework for few-shot learning in heterogeneous systems.
We evaluate TAM-RL on two real-world environmental datasets.
- Score: 15.40286222692196
- License:
- Abstract: We introduce TAM-RL (Task Aware Modulation using Representation Learning), a novel multimodal meta-learning framework for few-shot learning in heterogeneous systems, designed for science and engineering problems where entities share a common underlying forward model but exhibit heterogeneity due to entity-specific characteristics. TAM-RL leverages an amortized training process with a modulation network and a base network to learn task-specific modulation parameters, enabling efficient adaptation to new tasks with limited data. We evaluate TAM-RL on two real-world environmental datasets: Gross Primary Product (GPP) prediction and streamflow forecasting, demonstrating significant improvements over existing meta-learning methods. On the FLUXNET dataset, TAM-RL improves RMSE by 18.9\% over MMAML with just one month of few-shot data, while for streamflow prediction, it achieves an 8.21\% improvement with one year of data. Synthetic data experiments further validate TAM-RL's superior performance in heterogeneous task distributions, outperforming the baselines in the most heterogeneous setting. Notably, TAM-RL offers substantial computational efficiency, with at least 3x faster training times compared to gradient-based meta-learning approaches while being much simpler to train due to reduced complexity. Ablation studies highlight the importance of pretraining and adaptation mechanisms in TAM-RL's performance.
Related papers
- Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - Learning to Modulate pre-trained Models in RL [22.812215561012874]
Fine-tuning a pre-trained model often suffers from catastrophic forgetting.
Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly.
We propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model.
arXiv Detail & Related papers (2023-06-26T17:53:05Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Multi-Augmentation for Efficient Visual Representation Learning for
Self-supervised Pre-training [1.3733988835863333]
We propose Multi-Augmentations for Self-Supervised Learning (MA-SSRL), which fully searched for various augmentation policies to build the entire pipeline.
MA-SSRL successfully learns the invariant feature representation and presents an efficient, effective, and adaptable data augmentation pipeline for self-supervised pre-training.
arXiv Detail & Related papers (2022-05-24T04:18:39Z) - An Optimization-Based Meta-Learning Model for MRI Reconstruction with
Diverse Dataset [4.9259403018534496]
We develop a generalizable MRI reconstruction model in the meta-learning framework.
The proposed network learns regularization function in a learner adaptional model.
We test the result of quick training on the unseen tasks after meta-training and in the saving half of the time.
arXiv Detail & Related papers (2021-10-02T03:21:52Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.