AdaF^2M^2: Comprehensive Learning and Responsive Leveraging Features in Recommendation System
- URL: http://arxiv.org/abs/2501.15816v1
- Date: Mon, 27 Jan 2025 06:49:27 GMT
- Title: AdaF^2M^2: Comprehensive Learning and Responsive Leveraging Features in Recommendation System
- Authors: Yongchun Zhu, Jingwu Chen, Ling Chen, Yitan Li, Feng Zhang, Xiao Yang, Zuotao Liu,
- Abstract summary: We propose a model-agnostic framework AdaF2M2, short for Adaptive Feature Modeling with Feature Mask.
By arming base models with AdaF2M2, we conduct online A/B tests on multiple recommendation scenarios, obtaining +1.37% and +1.89% cumulative improvements on user active days and app duration respectively.
- Score: 16.364341783911414
- License:
- Abstract: Feature modeling, which involves feature representation learning and leveraging, plays an essential role in industrial recommendation systems. However, the data distribution in real-world applications usually follows a highly skewed long-tail pattern due to the popularity bias, which easily leads to over-reliance on ID-based features, such as user/item IDs and ID sequences of interactions. Such over-reliance makes it hard for models to learn features comprehensively, especially for those non-ID meta features, e.g., user/item characteristics. Further, it limits the feature leveraging ability in models, getting less generalized and more susceptible to data noise. Previous studies on feature modeling focus on feature extraction and interaction, hardly noticing the problems brought about by the long-tail data distribution. To achieve better feature representation learning and leveraging on real-world data, we propose a model-agnostic framework AdaF^2M^2, short for Adaptive Feature Modeling with Feature Mask. The feature-mask mechanism helps comprehensive feature learning via multi-forward training with augmented samples, while the adapter applies adaptive weights on features responsive to different user/item states. By arming base models with AdaF^2M^2, we conduct online A/B tests on multiple recommendation scenarios, obtaining +1.37% and +1.89% cumulative improvements on user active days and app duration respectively. Besides, the extended offline experiments on different models show improvements as well. AdaF$^2$M$^2$ has been widely deployed on both retrieval and ranking tasks in multiple applications of Douyin Group, indicating its superior effectiveness and universality.
Related papers
- FuXi-$α$: Scaling Recommendation Model with Feature Interaction Enhanced Transformer [81.12174905444229]
Recent advancements have shown that expanding sequential recommendation models to large-scale recommendation models can be an effective strategy.
We propose a new model called FuXi-$alpha$ to address these issues.
Our model outperforms existing models, with its performance continuously improving as the model size increases.
arXiv Detail & Related papers (2025-02-05T09:46:54Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.
It is designed to accurately detect horizontal or oriented objects from any sensor modality.
This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - GUME: Graphs and User Modalities Enhancement for Long-Tail Multimodal Recommendation [13.1192216083304]
We propose a novel Graphs and User Modalities Enhancement (GUME) for long-tail multimodal recommendation.
Specifically, we first enhance the user-item graph using multimodal similarity between items.
We then construct two types of user modalities: explicit interaction features and extended interest features.
arXiv Detail & Related papers (2024-07-17T06:29:00Z) - DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
We propose a novel multi-modal graph diffusion model for recommendation called DiffMM.
Our framework integrates a modality-aware graph diffusion model with a cross-modal contrastive learning paradigm to improve modality-aware user representation learning.
arXiv Detail & Related papers (2024-06-17T17:35:54Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - Robustness-enhanced Uplift Modeling with Adversarial Feature
Desensitization [11.404726761497798]
We propose a novel robustness-enhanced uplift modeling framework with adversarial feature desensitization (RUAD)
Our RUAD can more effectively alleviate the feature sensitivity of the uplift model through two customized modules.
We conduct extensive experiments on a public dataset and a real product dataset to verify the effectiveness of our RUAD in online marketing.
arXiv Detail & Related papers (2023-10-07T05:53:56Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
We present an invariant feature learning framework (IFLF) that extracts common information shared across subjects and devices.
Experiments demonstrated that IFLF is effective in handling both subject and device diversion across popular open datasets and an in-house dataset.
arXiv Detail & Related papers (2020-12-14T21:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.