Long-Term Interest Clock: Fine-Grained Time Perception in Streaming Recommendation System
- URL: http://arxiv.org/abs/2501.15817v1
- Date: Mon, 27 Jan 2025 06:52:50 GMT
- Title: Long-Term Interest Clock: Fine-Grained Time Perception in Streaming Recommendation System
- Authors: Yongchun Zhu, Guanyu Jiang, Jingwu Chen, Feng Zhang, Xiao Yang, Zuotao Liu,
- Abstract summary: Long-term Interest Clock (LIC) captures users' dynamic fine-grained interests from long-term behaviors.
LIC has been integrated into Douyin Music App's recommendation system.
- Score: 12.48124100628083
- License:
- Abstract: User interests manifest a dynamic pattern within the course of a day, e.g., a user usually favors soft music at 8 a.m. but may turn to ambient music at 10 p.m. To model dynamic interests in a day, hour embedding is widely used in traditional daily-trained industrial recommendation systems. However, its discreteness can cause periodical online patterns and instability in recent streaming recommendation systems. Recently, Interest Clock has achieved remarkable performance in streaming recommendation systems. Nevertheless, it models users' dynamic interests in a coarse-grained manner, merely encoding users' discrete interests of 24 hours from short-term behaviors. In this paper, we propose a fine-grained method for perceiving time information for streaming recommendation systems, named Long-term Interest Clock (LIC). The key idea of LIC is adaptively calculating current user interests by taking into consideration the relevance of long-term behaviors around current time (e.g., 8 a.m.) given a candidate item. LIC consists of two modules: (1) Clock-GSU retrieves a sub-sequence by searching through long-term behaviors, using query information from a candidate item and current time, (2) Clock-ESU employs a time-gap-aware attention mechanism to aggregate sub-sequence with the candidate item. With Clock-GSU and Clock-ESU, LIC is capable of capturing users' dynamic fine-grained interests from long-term behaviors. We conduct online A/B tests, obtaining +0.122% improvements on user active days. Besides, the extended offline experiments show improvements as well. Long-term Interest Clock has been integrated into Douyin Music App's recommendation system.
Related papers
- Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
Click-through Rate (CTR) prediction is crucial for online personalization platforms.
Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction.
We propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN)
arXiv Detail & Related papers (2024-11-22T15:29:05Z) - Interest Clock: Time Perception in Real-Time Streaming Recommendation System [14.993810545170343]
Time modeling aims to enable recommendation systems to perceive time changes to capture users' dynamic preferences over time.
There is still a lack of effective time modeling methods for streaming recommendation systems.
In this paper, we propose an effective and universal method Interest Clock to perceive time information in recommendation systems.
arXiv Detail & Related papers (2024-04-30T08:38:09Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR
Prediction [15.97120392599086]
We propose textbfM (textbfSampling-based textbfDeep textbfModeling), a simple yet effective sampling-based end-to-end approach for modeling long-term user behaviors.
We show theoretically and experimentally that the proposed method performs on par with standard attention-based models on modeling long-term user behaviors.
arXiv Detail & Related papers (2022-05-20T15:20:52Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Dynamic Sequential Graph Learning for Click-Through Rate Prediction [29.756257920214168]
We propose a novel method to enhance users' representations by utilizing collaborative information from the local sub-graphs associated with users or items.
Results on real-world CTR prediction benchmarks demonstrate the improvements brought by DSGL.
arXiv Detail & Related papers (2021-09-26T09:23:43Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Learning Heterogeneous Temporal Patterns of User Preference for Timely
Recommendation [15.930016839929047]
We propose a novel recommender system for timely recommendations, called TimelyRec.
In TimelyRec, a cascade of two encoders captures the temporal patterns of user preference using a proposed attention module for each encoder.
Our experiments on a scenario for item recommendation and the proposed scenario for item-timing recommendation on real-world datasets demonstrate the superiority of TimelyRec.
arXiv Detail & Related papers (2021-04-29T08:37:30Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
We propose a novel long sequential recommendation model called Dynamic Memory-based Attention Network (DMAN)
It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users.
Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation.
arXiv Detail & Related papers (2021-02-18T11:08:54Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.