The Components of Collaborative Joint Perception and Prediction -- A Conceptual Framework
- URL: http://arxiv.org/abs/2501.15860v1
- Date: Mon, 27 Jan 2025 08:36:14 GMT
- Title: The Components of Collaborative Joint Perception and Prediction -- A Conceptual Framework
- Authors: Lei Wan, Hannan Ejaz Keen, Alexey Vinel,
- Abstract summary: Connected Autonomous Vehicles (CAVs) benefit from Vehicle-to-Everything (V2X) communication, which enables the exchange of sensor data to achieve Collaborative Perception (CP)
This paper introduces a new task, Collaborative Joint Perception and Prediction (Co-P&P), and provides a conceptual framework for its implementation to improve motion prediction of surrounding objects, thereby enhancing vehicle awareness in complex traffic scenarios.
- Score: 0.9012198585960441
- License:
- Abstract: Connected Autonomous Vehicles (CAVs) benefit from Vehicle-to-Everything (V2X) communication, which enables the exchange of sensor data to achieve Collaborative Perception (CP). To reduce cumulative errors in perception modules and mitigate the visual occlusion, this paper introduces a new task, Collaborative Joint Perception and Prediction (Co-P&P), and provides a conceptual framework for its implementation to improve motion prediction of surrounding objects, thereby enhancing vehicle awareness in complex traffic scenarios. The framework consists of two decoupled core modules, Collaborative Scene Completion (CSC) and Joint Perception and Prediction (P&P) module, which simplify practical deployment and enhance scalability. Additionally, we outline the challenges in Co-P&P and discuss future directions for this research area.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - CMP: Cooperative Motion Prediction with Multi-Agent Communication [21.60646440715162]
This paper explores the feasibility and effectiveness of cooperative motion prediction.
Our method, CMP, takes LiDAR signals as model input to enhance tracking and prediction capabilities.
In particular, CMP reduces the average prediction error by 16.4% with fewer missing detections.
arXiv Detail & Related papers (2024-03-26T17:53:27Z) - V2X-PC: Vehicle-to-everything Collaborative Perception via Point Cluster [58.79477191603844]
We introduce a new message unit, namely point cluster, to represent the scene sparsely with a combination of low-level structure information and high-level semantic information.
This framework includes a Point Cluster Packing (PCP) module to keep object feature and manage bandwidth.
Experiments on two widely recognized collaborative perception benchmarks showcase the superior performance of our method compared to the previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-25T11:24:02Z) - MACP: Efficient Model Adaptation for Cooperative Perception [23.308578463976804]
We propose a new framework termed MACP, which equips a single-agent pre-trained model with cooperation capabilities.
We demonstrate in experiments that the proposed framework can effectively utilize cooperative observations and outperform other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-25T14:24:42Z) - DCP-Net: A Distributed Collaborative Perception Network for Remote
Sensing Semantic Segmentation [12.745202593789152]
This article innovatively presents a distributed collaborative perception network called DCP-Net.
DCP-Net helps members to enhance perception performance by integrating features from other platforms.
The results demonstrate that DCP-Net outperforms the existing methods comprehensively.
arXiv Detail & Related papers (2023-09-05T13:36:40Z) - Interruption-Aware Cooperative Perception for V2X Communication-Aided
Autonomous Driving [49.42873226593071]
We propose V2X communication INterruption-aware COoperative Perception (V2X-INCOP) for V2X communication-aided autonomous driving.
We use historical cooperation information to recover missing information due to the interruptions and alleviate the impact of the interruption issue.
Experiments on three public cooperative perception datasets demonstrate that the proposed method is effective in alleviating the impacts of communication interruption on cooperative perception.
arXiv Detail & Related papers (2023-04-24T04:59:13Z) - CoPEM: Cooperative Perception Error Models for Autonomous Driving [20.60246432605745]
We focus on the (onboard) perception of Autonomous Vehicles (AV), which can manifest as misdetection errors on the occluded objects.
We introduce the notion of Cooperative Perception Error Models (coPEMs) towards achieving an effective integration of V2X solutions within a virtual test environment.
arXiv Detail & Related papers (2022-11-21T04:40:27Z) - Collaborative Perception for Autonomous Driving: Current Status and
Future Trend [33.6716877086539]
Collaborative perception has been proposed which enables vehicles to share information to perceive the environments beyond line-of-sight and field-of-view.
This paper introduces the fundamental concepts, generalizing the collaboration modes and summarizing the key ingredients and applications of collaborative perception.
arXiv Detail & Related papers (2022-08-22T14:51:29Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.