Evaluation of NMT-Assisted Grammar Transfer for a Multi-Language Configurable Data-to-Text System
- URL: http://arxiv.org/abs/2501.16135v1
- Date: Mon, 27 Jan 2025 15:25:26 GMT
- Title: Evaluation of NMT-Assisted Grammar Transfer for a Multi-Language Configurable Data-to-Text System
- Authors: Andreas Madsack, Johanna Heininger, Adela Schneider, Ching-Yi Chen, Christian Eckard, Robert Weißgraeber,
- Abstract summary: One approach for multilingual data-to-text generation is to translate grammatical configurations upfront from the source language into each target language.
In this paper, we describe a rule-based NLG implementation where the configuration is translated by Neural Machine Translation (NMT) combined with a one-time human review.
Our evaluation on the SportSett:Basketball dataset shows that our NLG system performs well, underlining its grammatical correctness in translation tasks.
- Score: 0.04947896909360667
- License:
- Abstract: One approach for multilingual data-to-text generation is to translate grammatical configurations upfront from the source language into each target language. These configurations are then used by a surface realizer and in document planning stages to generate output. In this paper, we describe a rule-based NLG implementation of this approach where the configuration is translated by Neural Machine Translation (NMT) combined with a one-time human review, and introduce a cross-language grammar dependency model to create a multilingual NLG system that generates text from the source data, scaling the generation phase without a human in the loop. Additionally, we introduce a method for human post-editing evaluation on the automatically translated text. Our evaluation on the SportSett:Basketball dataset shows that our NLG system performs well, underlining its grammatical correctness in translation tasks.
Related papers
- A deep Natural Language Inference predictor without language-specific
training data [44.26507854087991]
We present a technique of NLP to tackle the problem of inference relation (NLI) between pairs of sentences in a target language of choice without a language-specific training dataset.
We exploit a generic translation dataset, manually translated, along with two instances of the same pre-trained model.
The model has been evaluated over machine translated Stanford NLI test dataset, machine translated Multi-Genre NLI test dataset, and manually translated RTE3-ITA test dataset.
arXiv Detail & Related papers (2023-09-06T10:20:59Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Language Agnostic Data-Driven Inverse Text Normalization [6.43601166279978]
inverse text normalization (ITN) problem attracts the attention of researchers from various fields.
Due to the scarcity of labeled spoken-written datasets, the studies on non-English data-driven ITN are quite limited.
We propose a language-agnostic data-driven ITN framework to fill this gap.
arXiv Detail & Related papers (2023-01-20T10:33:03Z) - Statistical Machine Translation for Indic Languages [1.8899300124593648]
This paper canvasses about the development of bilingual Statistical Machine Translation models.
To create the system, MOSES open-source SMT toolkit is explored.
In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES.
arXiv Detail & Related papers (2023-01-02T06:23:12Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding.
COD enables dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages.
arXiv Detail & Related papers (2022-01-31T18:11:21Z) - A Unified Strategy for Multilingual Grammatical Error Correction with
Pre-trained Cross-Lingual Language Model [100.67378875773495]
We propose a generic and language-independent strategy for multilingual Grammatical Error Correction.
Our approach creates diverse parallel GEC data without any language-specific operations.
It achieves the state-of-the-art results on the NLPCC 2018 Task 2 dataset (Chinese) and obtains competitive performance on Falko-Merlin (German) and RULEC-GEC (Russian)
arXiv Detail & Related papers (2022-01-26T02:10:32Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
We use Neural Machine Translation as an intermediate step to first obtain translations of task-specific text data.
We develop a procedure to derive word confusion networks from NMT beam search graphs.
We demonstrate that NMT confusion networks can help to reduce the perplexity of both n-gram and recurrent neural network LMs.
arXiv Detail & Related papers (2021-09-21T10:29:20Z) - Time-Stamped Language Model: Teaching Language Models to Understand the
Flow of Events [8.655294504286635]
We propose to formulate this task as a question answering problem.
This enables us to use pre-trained language models on other QA benchmarks by adapting those to the procedural text understanding.
Our model evaluated on the Propara dataset shows improvements on the published state-of-the-art results with a $3.1%$ increase in F1 score.
arXiv Detail & Related papers (2021-04-15T17:50:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
Document-level machine translation incorporates inter-sentential dependencies into the translation of a source sentence.
We propose a new framework to model cross-sentence dependencies by training neural machine translation (NMT) to predict both the target translation and surrounding sentences of a source sentence.
arXiv Detail & Related papers (2020-03-30T03:38:01Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.