State Permutation Control in Non-Hermitian Multiqubit Systems with Suppressed Non-Adiabatic Transitions
- URL: http://arxiv.org/abs/2501.16160v1
- Date: Mon, 27 Jan 2025 15:57:21 GMT
- Title: State Permutation Control in Non-Hermitian Multiqubit Systems with Suppressed Non-Adiabatic Transitions
- Authors: Ievgen I. Arkhipov, Philippe Lewalle, Franco Nori, Şahin K. Özdemir, K. Birgitta Whaley,
- Abstract summary: We introduce a model of interacting qubits governed by an effective non-Hermitian Hamiltonian that hosts EPs and possesses a completely real energy spectrum.
Our findings indicate that, contrary to previous beliefs, non-Hermiticity can be utilized to achieve controlled state permutations in time-modulated multiqubit systems.
- Score: 0.0
- License:
- Abstract: Non-Hermitian systems have been at the focus of intense research for over a decade, partly due to their nontrivial energy topology formed by intersecting Riemann manifolds with branch points known as exceptional points (EPs). This spectral property can be exploited, e.g., to achieve controlled state permutations that are necessary for implementing a wide class of classical and quantum information protocols. However, the imaginary spectra of typical non-Hermitian systems lead to instabilities and breakdown of adiabaticity, which impedes the practical use of EP-induced energy topologies in quantum information protocols that explicitly rely on symmetric state flips. On the other hand, techniques that help to suppress non-adiabatic transitions in non-Hermitian systems have also been developed, but these advances have so far been limited to single qubits. In this work, we address this long-standing problem by introducing a model of interacting qubits governed by an effective non-Hermitian Hamiltonian that hosts EPs and possesses a completely real energy spectrum. We demonstrate that such non-Hermitian Hamiltonians enable realization of permutation groups in the multi-qubit eigenspace. Our findings indicate that, contrary to previous beliefs, non-Hermiticity can be utilized to achieve controlled state permutations in time-modulated multiqubit systems, thus paving the way for the advancement and development of novel quantum information protocols.
Related papers
- Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Shortcuts to adiabaticity with general two-level non-Hermitian systems [0.0]
Adiabaticity is a fast process which reproduces the same final state as the adiabatic process in a finite or even shorter time.
We propose a shortcuts to adiabaticity technique which is based on a transitionless quantum driving algorithm.
We show that the general Hamiltonian the off-diagonal elements of which are not conjugate to each other can be implemented in many physical systems.
arXiv Detail & Related papers (2024-04-12T02:15:07Z) - Restoring Adiabatic State Transfer in Time-Modulated Non-Hermitian
Systems [0.0]
We show that adiabaticity can be achieved when dynamically winding around exceptional points (EPs) in non-Hermitian systems.
Our findings offer a promise for advancing various wave manipulation protocols in both quantum and classical domains.
arXiv Detail & Related papers (2024-02-23T12:53:16Z) - Critical non-Hermitian topology induced quantum sensing [0.0]
Non-Hermitian physics predicts open quantum system dynamics with unique topological features such as exceptional points and the non-Hermitian skin effect.
We show that this new paradigm of topological systems can serve as probes for bulk Hamiltonian parameters with quantum-enhanced sensitivity reaching Heisenberg scaling.
arXiv Detail & Related papers (2023-11-21T18:04:26Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Probing phase transitions in non-Hermitian systems with Multiple Quantum
Coherences [0.0]
We show the usefulness of multiple quantum coherences for probing equilibrium phase transitions in non-Hermitian systems.
Our results have applications to non-Hermitian quantum sensing, quantum thermodynamics, and in the study of the non-Hermitian skin effect.
arXiv Detail & Related papers (2021-09-06T14:30:47Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.