論文の概要: Return of the Encoder: Maximizing Parameter Efficiency for SLMs
- arxiv url: http://arxiv.org/abs/2501.16273v2
- Date: Thu, 30 Jan 2025 16:44:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 11:53:10.639005
- Title: Return of the Encoder: Maximizing Parameter Efficiency for SLMs
- Title(参考訳): エンコーダの返却:SLMのパラメータ効率の最大化
- Authors: Mohamed Elfeki, Rui Liu, Chad Voegele,
- Abstract要約: encoder-decoderアーキテクチャは、エッジデバイスのデコーダのみのモデルと比較して、47%のレイテンシと4.7倍のスループットを実現している。
本稿では,エンコーダ・デコーダモデルを用いた,大規模でスケーラブルなデコーダのみの教師の能力を活用した新しい知識蒸留フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.246337121596753
- License:
- Abstract: The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount.
- Abstract(参考訳): 大規模なデコーダのみの言語モデルの優位性は、シーケンス処理における根本的な効率性にもかかわらず、エンコーダ-デコーダアーキテクチャに隠れている。
小さな言語モデル(SLM) - パラメータが10億以下の - では、GPU、CPU、NPUプラットフォームにわたる体系的な分析により、エンコーダ-デコーダアーキテクチャは、エッジデバイスのデコーダのみのモデルに比べて、47%のレイテンシと4.7倍のスループットを実現していることが明らかになった。
これらの利得は、エンコーダ・デコーダのワンタイム入力処理と、理解と生成フェーズの効率的な分離に起因する可能性がある。
本稿では,エンコーダ・デコーダモデルを用いて,大規模でスケーラブルなデコーダのみの教師の能力を活用できる新しい知識蒸留フレームワークを提案する。
ロータリー位置埋め込み(RoPE)やビジョンエンコーダ(Vision encoder)といった近代的な進歩と組み合わせることで,エンコーダ・デコーダアーキテクチャが,資源制約のある環境において有能な言語モデルをデプロイする上で,より実用的な経路を提供することを示す。
本研究は,特に計算効率が最重要であるデバイス上およびエッジ配置において,パラメータ予算が減少するにつれて,デコーダのみのスケーリングが主流となる傾向に挑戦する。
関連論文リスト
- EVEv2: Improved Baselines for Encoder-Free Vision-Language Models [72.07868838411474]
既存のエンコーダフリービジョン言語モデル(VLM)は、エンコーダベースモデルと性能ギャップを狭めている。
我々は,主流のエンコーダをベースとしたVLMと競合するエンコーダフリーVLMの効率的な戦略を開発する。
統一モデルにおいて、視覚と言語を適切に階層的に関連付けることで、モダリティ間の干渉を減少させることを示す。
論文 参考訳(メタデータ) (2025-02-10T18:59:58Z) - Efficient Encoder-Decoder Transformer Decoding for Decomposable Tasks [53.550782959908524]
エンコーダ・デコーダモデルのための新しい構成を導入し、構造化された出力と分解可能なタスクの効率を改善する。
提案手法は,インプットを一度エンコードして並列にデコードすることで,トレーニングと推論の効率を向上する。
論文 参考訳(メタデータ) (2024-03-19T19:27:23Z) - Extreme Encoder Output Frame Rate Reduction: Improving Computational
Latencies of Large End-to-End Models [59.57732929473519]
エンコーダに複数のフレーム削減層を適用し,少数の出力フレームにエンコーダ出力を圧縮する。
入力音声の2.56秒毎に1つのエンコーダ出力フレームを生成できることを示す。
論文 参考訳(メタデータ) (2024-02-27T03:40:44Z) - DEED: Dynamic Early Exit on Decoder for Accelerating Encoder-Decoder
Transformer Models [22.276574156358084]
我々は,各デコーダ層が妥当な予測を生成できるように,深層監視で訓練されたマルチエキシット・エンコーダ・デコーダ・トランスフォーマモデルを構築した。
提案手法は,ベースラインに比べて精度が向上し,全体の推論遅延を30%から60%削減できることを示す。
論文 参考訳(メタデータ) (2023-11-15T01:01:02Z) - NASH: A Simple Unified Framework of Structured Pruning for Accelerating
Encoder-Decoder Language Models [29.468888611690346]
本稿では、エンコーダを狭め、エンコーダ-デコーダモデルのデコーダネットワークを短縮する、シンプルで効果的なフレームワークNASHを提案する。
その結果,(1)デコーダの層数が推論速度の主要因であること,(2)プルーンドエンコーダネットワークの低間隔性が生成品質を向上させること,の2つの知見が明らかになった。
論文 参考訳(メタデータ) (2023-10-16T04:27:36Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
seq2seqタスクは、与えられた入力ソースシーケンスに基づいてターゲットシーケンスを生成することを目的としている。
伝統的に、seq2seqタスクのほとんどはエンコーダによって解決され、ソースシーケンスとデコーダをエンコードしてターゲットテキストを生成する。
最近、デコーダのみの言語モデルをseq2seqタスクに直接適用する、多くの新しいアプローチが出現しました。
論文 参考訳(メタデータ) (2023-04-08T15:44:29Z) - MUSTER: A Multi-scale Transformer-based Decoder for Semantic Segmentation [19.83103856355554]
MUSTERはトランスフォーマーベースのデコーダで、階層エンコーダとシームレスに統合される。
MSKAユニットはエンコーダとデコーダからのマルチスケール機能の融合を可能にし、包括的な情報統合を容易にする。
ADE20Kデータセットでは,50.23の単一スケールmIoUと51.88のマルチスケールmIoUを達成する。
論文 参考訳(メタデータ) (2022-11-25T06:51:07Z) - Adversarial Neural Networks for Error Correcting Codes [76.70040964453638]
機械学習(ML)モデルの性能と適用性を高めるための一般的なフレームワークを紹介する。
本稿では,MLデコーダと競合する識別器ネットワークを組み合わせることを提案する。
我々のフレームワークはゲーム理論であり、GAN(Generative Adversarial Network)によって動機付けられている。
論文 参考訳(メタデータ) (2021-12-21T19:14:44Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
動的ニューラル表現デコーダ(NRD)と呼ばれる新しいデコーダを提案する。
エンコーダの出力上の各位置がセマンティックラベルの局所的なパッチに対応するので、この研究では、これらの局所的なパッチをコンパクトなニューラルネットワークで表現する。
このニューラル表現により、意味ラベル空間に先行する滑らかさを活用することができ、デコーダをより効率的にすることができる。
論文 参考訳(メタデータ) (2021-07-30T04:50:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。