Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printing
- URL: http://arxiv.org/abs/2501.16381v1
- Date: Fri, 24 Jan 2025 16:26:20 GMT
- Title: Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printing
- Authors: Pauline Rothmann-Brumm, Steven L. Brunton, Isabel Scherl,
- Abstract summary: Hydrodynamic pattern formation phenomena in printing and coating processes are still not fully understood.
The aim of the paper is to develop an automated pattern classification algorithm based on supervised machine learning and reduced-order modeling.
- Score: 2.4344640336100936
- License:
- Abstract: Hydrodynamic pattern formation phenomena in printing and coating processes are still not fully understood. However, fundamental understanding is essential to achieve high-quality printed products and to tune printed patterns according to the needs of a specific application like printed electronics, graphical printing, or biomedical printing. The aim of the paper is to develop an automated pattern classification algorithm based on methods from supervised machine learning and reduced-order modeling. We use the HYPA-p dataset, a large image dataset of gravure-printed images, which shows various types of hydrodynamic pattern formation phenomena. It enables the correlation of printing process parameters and resulting printed patterns for the first time. 26880 images of the HYPA-p dataset have been labeled by a human observer as dot patterns, mixed patterns, or finger patterns; 864000 images (97%) are unlabeled. A singular value decomposition (SVD) is used to find the modes of the labeled images and to reduce the dimensionality of the full dataset by truncation and projection. Selected machine learning classification techniques are trained on the reduced-order data. We investigate the effect of several factors, including classifier choice, whether or not fast Fourier transform (FFT) is used to preprocess the labeled images, data balancing, and data normalization. The best performing model is a k-nearest neighbor (kNN) classifier trained on unbalanced, FFT-transformed data with a test error of 3%, which outperforms a human observer by 7%. Data balancing slightly increases the test error of the kNN-model to 5%, but also increases the recall of the mixed class from 90% to 94%. Finally, we demonstrate how the trained models can be used to predict the pattern class of unlabeled images and how the predictions can be correlated to the printing process parameters, in the form of regime maps.
Related papers
- Automated Segmentation and Analysis of Microscopy Images of Laser Powder Bed Fusion Melt Tracks [0.0]
We present an image segmentation neural network that automatically identifies and measures melt track dimensions from a cross-section image.
We use a U-Net architecture to train on a data set of 62 pre-labelled images obtained from different labs, machines, and materials coupled with image augmentation.
arXiv Detail & Related papers (2024-09-26T22:44:00Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - High-Throughput Phenotyping using Computer Vision and Machine Learning [0.0]
We used a dataset provided by Oak Ridge National Laboratory with 1,672 images of Populus Trichocarpa with white labels displaying treatment.
Optical character recognition (OCR) was used to read these labels on the plants.
Machine learning models were used to predict treatment based on those classifications, and analyzed encoded EXIF tags were used for the purpose of finding leaf size and correlations between phenotypes.
arXiv Detail & Related papers (2024-07-08T19:46:31Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [22.11487736315616]
Rectified flow is a recent generative model formulation that connects data and noise in a straight line.
We improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales.
We present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities.
arXiv Detail & Related papers (2024-03-05T18:45:39Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [102.88033622546251]
We propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text.
Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images.
We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier.
arXiv Detail & Related papers (2023-03-30T05:25:20Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - An adaptive human-in-the-loop approach to emission detection of Additive
Manufacturing processes and active learning with computer vision [76.72662577101988]
In-situ monitoring and process control in Additive Manufacturing (AM) allows the collection of large amounts of emission data.
This data can be used as input into 3D and 2D representations of the 3D-printed parts.
The aim of this paper is to propose an adaptive human-in-the-loop approach using Machine Learning techniques.
arXiv Detail & Related papers (2022-12-12T15:11:18Z) - Background Splitting: Finding Rare Classes in a Sea of Background [55.03789745276442]
We focus on the real-world problem of training accurate deep models for image classification of a small number of rare categories.
In these scenarios, almost all images belong to the background category in the dataset (>95% of the dataset is background)
We demonstrate that both standard fine-tuning approaches and state-of-the-art approaches for training on imbalanced datasets do not produce accurate deep models in the presence of this extreme imbalance.
arXiv Detail & Related papers (2020-08-28T23:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.