THOR: A Generic Energy Estimation Approach for On-Device Training
- URL: http://arxiv.org/abs/2501.16397v1
- Date: Mon, 27 Jan 2025 03:29:02 GMT
- Title: THOR: A Generic Energy Estimation Approach for On-Device Training
- Authors: Jiaru Zhang, Zesong Wang, Hao Wang, Tao Song, Huai-an Su, Rui Chen, Yang Hua, Xiangwei Zhou, Ruhui Ma, Miao Pan, Haibing Guan,
- Abstract summary: THOR is a generic approach for energy consumption estimation in deep neural network (DNN) training.
We conduct extensive experiments with various types of models across different real-world platforms.
The results demonstrate that THOR has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%.
- Score: 34.57867978862375
- License:
- Abstract: Battery-powered mobile devices (e.g., smartphones, AR/VR glasses, and various IoT devices) are increasingly being used for AI training due to their growing computational power and easy access to valuable, diverse, and real-time data. On-device training is highly energy-intensive, making accurate energy consumption estimation crucial for effective job scheduling and sustainable AI. However, the heterogeneity of devices and the complexity of models challenge the accuracy and generalizability of existing estimation methods. This paper proposes THOR, a generic approach for energy consumption estimation in deep neural network (DNN) training. First, we examine the layer-wise energy additivity property of DNNs and strategically partition the entire model into layers for fine-grained energy consumption profiling. Then, we fit Gaussian Process (GP) models to learn from layer-wise energy consumption measurements and estimate a DNN's overall energy consumption based on its layer-wise energy additivity property. We conduct extensive experiments with various types of models across different real-world platforms. The results demonstrate that THOR has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%. Moreover, THOR is applied in guiding energy-aware pruning, successfully reducing energy consumption by 50%, thereby further demonstrating its generality and potential.
Related papers
- Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices [8.140572894424208]
We conduct a threefold study, including energy measurement, prediction, and efficiency scoring.
Firstly, we present a detailed, first-of-its-kind measurement study that uncovers the energy consumption characteristics of on-device deep learning.
Secondly, we design and implement the first kernel-level energy predictors for edge devices based on our kernel-level energy dataset.
arXiv Detail & Related papers (2023-10-19T23:55:00Z) - Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances [0.16777183511743468]
Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from a single metering point.
We introduce a novel DL model aimed at enhanced multi-label classification of NILM with improved computation and energy efficiency.
Compared to the state-of-the-art, the proposed model has its energy consumption reduced by more than 23%.
arXiv Detail & Related papers (2023-07-18T13:23:23Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
We propose energy-adaptive dynamic early exiting to enable efficient and accurate inference in an EH edge intelligence system.
Our approach derives an energy-aware EE policy that determines the optimal amount of computational processing on a per-sample basis.
Results show that accuracy and service rate are improved up to 25% and 35%, respectively, in comparison with an energy-agnostic policy.
arXiv Detail & Related papers (2023-05-23T14:17:44Z) - EPAM: A Predictive Energy Model for Mobile AI [6.451060076703027]
We introduce a comprehensive study of mobile AI applications considering different deep neural network (DNN) models and processing sources.
We measure the latency, energy consumption, and memory usage of all the models using four processing sources.
Our study highlights important insights, such as how mobile AI behaves in different applications (vision and non-vision) using CPU, GPU, and NNAPI.
arXiv Detail & Related papers (2023-03-02T09:11:23Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
We present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes.
One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer.
arXiv Detail & Related papers (2022-12-03T21:40:55Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions.
Recent advances reveal that deep neural networks (DNNs) can get favorable performance for NILM.
We introduce the idea of adversarial learning into NILM, which is new for the energy disaggregation task.
arXiv Detail & Related papers (2021-08-02T03:56:35Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
This paper presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection.
Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection.
arXiv Detail & Related papers (2020-11-26T00:32:07Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.