Viewing fluxonium through the lens of the cat qubit
- URL: http://arxiv.org/abs/2501.16425v1
- Date: Mon, 27 Jan 2025 19:00:01 GMT
- Title: Viewing fluxonium through the lens of the cat qubit
- Authors: Simon Lieu, Emma L. Rosenfeld, Kyungjoo Noh, Connor T. Hann,
- Abstract summary: We draw analogies between protected superconducting qubits and bosonic qubits by studying the fluxonium Hamiltonian in its Fock basis.
We discuss first steps towards generating an Ising interaction between protected qubits on a two-dimensional lattice, with the aim of achieving a passive quantum memory by coupling a static Hamiltonian to a generic thermal bath.
- Score: 0.4999814847776097
- License:
- Abstract: We draw analogies between protected superconducting qubits and bosonic qubits by studying the fluxonium Hamiltonian in its Fock basis. The mean-field phase diagram of fluxonium (at the sweet spot) is identified, with a region in parameter space that is characterized by $\mathbb{Z}_2$-symmetry-broken ground states. In the heavy fluxonium limit, these ground states are well approximated by squeezed coherent states in a Fock basis (corresponding to persistent current states with definite flux but indefinite charge), and simple expressions are provided for them in terms of the circuit parameters. We study the noise bias in fluxonium via a universal Lindblad master equation and find that the bit-flip rate is exponentially small in $E_j/(k_B T)$, while the phase-flip rate does not get worse with this ratio. Analogous behavior is found in $\cos(2 \theta)$ qubits. We discuss first steps towards generating an Ising interaction between protected superconducting qubits on a two-dimensional lattice, with the aim of achieving a passive quantum memory by coupling a static Hamiltonian to a generic thermal bath.
Related papers
- Flux-Tunable Regimes and Supersymmetry in Twisted Cuprate Heterostructures [39.58317527488534]
Two Josephson junctions are integrated in a SQuID circuit threaded by a magnetic flux.
We show that the flowermon qubit regime is maintained up to a finite critical value of the magnetic field.
The interplay between the inherent twisted d-wave nature of the order parameter and the external magnetic flux enables the implementation of different artificial atoms.
arXiv Detail & Related papers (2024-05-06T13:27:19Z) - Using bi-fluxon tunneling to protect the Fluxonium qubit [0.08426358786287626]
We study a fluxonium circuit in which the wave-functions are engineered to minimize their overlap.
Our circuit incorporates a resonant tunneling mechanism at zero external flux that couples states with the same fluxon parity.
Two-tone spectroscopy reveals the energy level structure of the circuit and the presence of $4 pi$ quantum-phase slips.
arXiv Detail & Related papers (2024-02-07T00:38:38Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Photon-induced droplet-like bound states in one-dimensional qubit array [0.0]
We study the bandgap regime where the energy of two excited qubits is off-resonant with the two-photon bound state band.
A two-step adiabatic elimination of the photonic degrees of freedom gives rise to a one-dimensional spin Hamiltonian with effective interactions.
arXiv Detail & Related papers (2023-07-12T01:46:55Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Correlated metallic two-particle bound states in Wannier--Stark
flatbands [0.0]
Tight-binding single-particle models on simple Bravais lattices in space dimension $d geq 2$, when exposed to commensurate DC fields, result in the complete absence of transport.
We introduce interaction among two particles that partially lifts the localization and results in metallic two-particle bound states that propagate in the directions perpendicular to the DC field.
arXiv Detail & Related papers (2022-04-27T01:30:21Z) - Demonstration of the Two-Fluxonium Cross-Resonance Gate [1.8568045743509223]
Current implementations of two-qubit gates compromise fluxonium's coherence properties.
We realize a fast all-microwave cross-resonance gate between two capacitively-coupled fluxoniums.
Our results project a possible pathway towards reducing the two-qubit error rate below $10-4$ with present-day technologies.
arXiv Detail & Related papers (2022-04-25T17:59:17Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Universal set of quantum gates for the flip-flop qubit in the presence
of 1/f noise [0.0]
A universal set of quantum gates for flip-flop qubits is proposed.
The effect of a realistic 1/f noise on the gate fidelity is investigated.
arXiv Detail & Related papers (2021-04-29T13:46:54Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.