Quantum geometric bounds in spinful systems with trivial band topology
- URL: http://arxiv.org/abs/2501.16428v1
- Date: Mon, 27 Jan 2025 19:00:02 GMT
- Title: Quantum geometric bounds in spinful systems with trivial band topology
- Authors: Wojciech J. Jankowski, Robert-Jan Slager, Gunnar F. Lange,
- Abstract summary: We derive quantum geometric bounds in spinful systems with spin-topology characterized by a single $mathbbZ$-index protected by a spin gap.
Our bounds provide unbounded geometric conditions on the spin topology, distinct from the known quantum geometric bounds associated with Wilson loops and nontrivial band topologies.
- Score: 0.0
- License:
- Abstract: We derive quantum geometric bounds in spinful systems with spin-topology characterized by a single $\mathbb{Z}$-index protected by a spin gap. Our bounds provide geometric conditions on the spin topology, distinct from the known quantum geometric bounds associated with Wilson loops and nontrivial band topologies. As a result, we obtain stricter bounds in time-reversal symmetric systems with a nontrivial $\mathbb{Z}_2$ index and also bounds in systems with a trivial $\mathbb{Z}_2$ index, where quantum metric should be otherwise unbounded. We benchmark these findings with first-principles calculations in elemental Bismuth realizing higher even nontrivial spin-Chern numbers. Moreover, we connect these bounds to optical responses, demonstrating that spin-resolved quantum geometry can be observed experimentally. Finally, we connect spin-bounds to quantum Fisher information and Cram\'er-Rao bounds which are central to quantum metrology, showing that the elemental Bi and other spin-topological phases hold promises for topological free fermion quantum sensors.
Related papers
- Detecting Quantum Anomalies in Open Systems [0.0]
We introduce a novel and experimentally feasible approach to detect quantum anomalies in open systems.
We numerically demonstrate the unavoidable singular behavior of $exp(rmitheta Sz_rm tot)$ for half-integer spin chains.
arXiv Detail & Related papers (2023-12-18T13:29:07Z) - Extracting the Quantum Geometric Tensor of an Optical Raman Lattice by
Bloch State Tomography [2.0758589947805572]
In Hilbert space, the geometry of the quantum state is identified by the quantum geometric tensor (QGT)
We propose and experimentally implement a complete Bloch state tomography to measure eigenfunction of an optical Raman lattice for ultracold atoms.
arXiv Detail & Related papers (2023-01-15T13:05:01Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Geometrical, topological and dynamical description of $\mathcal{N}$
interacting spin-$\mathtt{s}$ under long-range Ising model and their
interplay with quantum entanglement [0.0]
This work investigates the connections between integrable quantum systems with quantum phenomena exploitable in quantum information tasks.
We find the relevant dynamics, identify the corresponding quantum phase space and derive the associated Fubini-Study metric.
By narrowing the system to a two spin-$mathtts$ system, we explore the relevant entanglement from two different perspectives.
arXiv Detail & Related papers (2022-10-29T11:53:14Z) - Area-law entanglement from quantum geometry [0.0]
We study the entanglement entropy of a region of linear size $ell$ in fermion systems with nontrivial quantum geometry.
We show that the entanglement entropy scales as $S = alpha elld-1 lnell + beta elld-1 + cdots$ where the first term is the well-known area-law violating term for fermions.
arXiv Detail & Related papers (2022-10-24T18:00:59Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.