Closed-Form Feedback-Free Learning with Forward Projection
- URL: http://arxiv.org/abs/2501.16476v1
- Date: Mon, 27 Jan 2025 20:10:37 GMT
- Title: Closed-Form Feedback-Free Learning with Forward Projection
- Authors: Robert O'Shea, Bipin Rajendran,
- Abstract summary: Forward Projection is a machine learning approach that yields interpretable neural network models without retrograde communication of neuronal activity during training.
We demonstrate the effectiveness of FP across four biomedical datasets.
- Score: 1.0128808054306186
- License:
- Abstract: State-of-the-art methods for backpropagation-free learning employ local error feedback to direct iterative optimisation via gradient descent. In this study, we examine the more restrictive setting where retrograde communication from neuronal outputs is unavailable for pre-synaptic weight optimisation. To address this challenge, we propose Forward Projection (FP). This novel randomised closed-form training method requires only a single forward pass over the entire dataset for model fitting, without retrograde communication. Target values for pre-activation membrane potentials are generated layer-wise via nonlinear projections of pre-synaptic inputs and the labels. Local loss functions are optimised over pre-synaptic inputs using closed-form regression, without feedback from neuronal outputs or downstream layers. Interpretability is a key advantage of FP training; membrane potentials of hidden neurons in FP-trained networks encode information which is interpretable layer-wise as label predictions. We demonstrate the effectiveness of FP across four biomedical datasets. In few-shot learning tasks, FP yielded more generalisable models than those optimised via backpropagation. In large-sample tasks, FP-based models achieve generalisation comparable to gradient descent-based local learning methods while requiring only a single forward propagation step, achieving significant speed up for training. Interpretation functions defined on local neuronal activity in FP-based models successfully identified clinically salient features for diagnosis in two biomedical datasets. Forward Projection is a computationally efficient machine learning approach that yields interpretable neural network models without retrograde communication of neuronal activity during training.
Related papers
- PreAdaptFWI: Pretrained-Based Adaptive Residual Learning for Full-Waveform Inversion Without Dataset Dependency [8.719356558714246]
Full-waveform inversion (FWI) is a method that utilizes seismic data to invert the physical parameters of subsurface media.
Due to its ill-posed nature, FWI is susceptible to getting trapped in local minima.
Various research efforts have attempted to combine neural networks with FWI to stabilize the inversion process.
arXiv Detail & Related papers (2025-02-17T15:30:17Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
A new type of neural network is presented using the rapid neural network paradigm.
It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy.
arXiv Detail & Related papers (2023-09-12T22:34:34Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems.
We design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit.
PFF efficiently learns to propagate learning signals and updates synapses with forward passes only.
arXiv Detail & Related papers (2023-01-04T05:34:48Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
Spiking neural networks (SNNs) are a viable alternative to conventional artificial neural networks.
We present desire backpropagation, a method to derive the desired spike activity of all neurons, including the hidden ones.
We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively.
arXiv Detail & Related papers (2022-11-10T08:32:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Adaptive conversion of real-valued input into spike trains [91.3755431537592]
This paper presents a biologically plausible method for converting real-valued input into spike trains for processing with spiking neural networks.
The proposed method mimics the adaptive behaviour of retinal ganglion cells and allows input neurons to adapt their response to changes in the statistics of the input.
arXiv Detail & Related papers (2021-04-12T12:33:52Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.