instancespace: a Python Package for Insightful Algorithm Testing through Instance Space Analysis
- URL: http://arxiv.org/abs/2501.16646v1
- Date: Tue, 28 Jan 2025 02:29:40 GMT
- Title: instancespace: a Python Package for Insightful Algorithm Testing through Instance Space Analysis
- Authors: Yusuf Berdan Güzel, Kushagra Khare, Nathan Harvey, Kian Dsouza, Dong Hyeog Jang, Junheng Chen, Cheng Ze Lam, Mario Andrés Muñoz,
- Abstract summary: Instance Space Analysis is a methodology to evaluate algorithm performance across diverse problem fields.
This paper introduces instancespace, a Python package that implements an automated pipeline for Instance Space Analysis.
- Score: 0.0
- License:
- Abstract: Instance Space Analysis is a methodology to evaluate algorithm performance across diverse problem fields. Through visualisation and exploratory data analysis techniques, Instance Space Analysis offers objective, data-driven insights into the diversity of test instances, algorithm behaviour, and algorithm strengths and weaknesses. As such, it supports automated algorithm selection and synthetic test instance generation, increasing testing reliability in optimisation, machine learning, and scheduling fields. This paper introduces instancespace, a Python package that implements an automated pipeline for Instance Space Analysis. This package supports research by streamlining the testing process, providing unbiased metrics, and facilitating more informed algorithmic design and deployment decisions, particularly for complex and safety-critical systems.
Related papers
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
We provide the means to compute exploratory landscape features for mixed-variable problems where the decision space is a mixture of continuous, binary, integer, and categorical variables.
To further highlight their merit for practical applications, we design and conduct an automated algorithm selection study.
Our trained algorithm selector is able to close the gap between the single best and the virtual best solver by 57.5% over all benchmark problems.
arXiv Detail & Related papers (2024-02-26T10:19:23Z) - Algorithm Instance Footprint: Separating Easily Solvable and Challenging
Problem Instances [0.7046417074932257]
In black-box optimization, it is essential to understand why an algorithm instance works on a set of problem instances while failing on others.
We propose a methodology for formulating an algorithm instance footprint that consists of a set of problem instances that are easy to be solved and a set of problem instances that are difficult to be solved.
arXiv Detail & Related papers (2023-06-01T09:28:06Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - A Simple and Efficient Sampling-based Algorithm for General Reachability
Analysis [32.488975902387395]
General-purpose reachability analysis remains a notoriously challenging problem with applications ranging from neural network verification to safety analysis of dynamical systems.
By sampling inputs, evaluating their images in the true reachable set, and taking their $epsilon$-padded convex hull as a set estimator, this algorithm applies to general problem settings and is simple to implement.
This analysis informs algorithmic design to obtain an $epsilon$-close reachable set approximation with high probability.
On a neural network verification task, we show that this approach is more accurate and significantly faster than prior work.
arXiv Detail & Related papers (2021-12-10T18:56:16Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Towards Large Scale Automated Algorithm Design by Integrating Modular
Benchmarking Frameworks [0.9281671380673306]
We present a first proof-of-concept use-case that demonstrates the efficiency of the algorithm framework ParadisEO with the automated algorithm configuration tool irace and the experimental platform IOHprofiler.
Key advantages of our pipeline are fast evaluation times, the possibility to generate rich data sets, and a standardized interface that can be used to benchmark very broad classes of sampling-based optimizations.
arXiv Detail & Related papers (2021-02-12T10:47:00Z) - Instance Space Analysis for the Car Sequencing Problem [4.822624702094427]
We investigate what characteristics make an instance hard to solve.
We compare the performance of six algorithms for solving the car sequencing problem.
Our results show that the new algorithms are state-of-the-art.
arXiv Detail & Related papers (2020-12-18T05:26:13Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.