論文の概要: Consistency Diffusion Models for Single-Image 3D Reconstruction with Priors
- arxiv url: http://arxiv.org/abs/2501.16737v1
- Date: Tue, 28 Jan 2025 06:21:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:30.664989
- Title: Consistency Diffusion Models for Single-Image 3D Reconstruction with Priors
- Title(参考訳): 先行画像を用いた1次元画像再構成のための一貫性拡散モデル
- Authors: Chenru Jiang, Chengrui Zhang, Xi Yang, Jie Sun, Kaizhu Huang,
- Abstract要約: 拡散モデルに基づく先駆的なトレーニングフレームワークを提案する。
初期3次元点雲から導かれる3次元構造素を有界項として変換する。
単一入力画像から2D先行情報を抽出し,これらを3Dポイントクラウドに投影し,拡散訓練のためのガイダンスを強化する。
- 参考スコア(独自算出の注目度): 18.914674943304746
- License:
- Abstract: This paper delves into the study of 3D point cloud reconstruction from a single image. Our objective is to develop the Consistency Diffusion Model, exploring synergistic 2D and 3D priors in the Bayesian framework to ensure superior consistency in the reconstruction process, a challenging yet critical requirement in this field. Specifically, we introduce a pioneering training framework under diffusion models that brings two key innovations. First, we convert 3D structural priors derived from the initial 3D point cloud as a bound term to increase evidence in the variational Bayesian framework, leveraging these robust intrinsic priors to tightly govern the diffusion training process and bolster consistency in reconstruction. Second, we extract and incorporate 2D priors from the single input image, projecting them onto the 3D point cloud to enrich the guidance for diffusion training. Our framework not only sidesteps potential model learning shifts that may arise from directly imposing additional constraints during training but also precisely transposes the 2D priors into the 3D domain. Extensive experimental evaluations reveal that our approach sets new benchmarks in both synthetic and real-world datasets. The code is included with the submission.
- Abstract(参考訳): 本稿では,1枚の画像から3次元点雲を復元する手法について検討する。
本研究の目的は, コンシステンシー拡散モデル(Consistency Diffusion Model)の開発であり, ベイジアンフレームワークにおける相乗的2次元および3次元の先行性を探究し, 再建過程における優れた整合性を確保することにある。
具体的には、2つの重要なイノベーションをもたらす拡散モデルの下での先駆的なトレーニングフレームワークを紹介します。
まず,初期3次元点雲から導出される3次元構造的先行点を有界項として変換し,これらの頑健な内在的先行点を利用して拡散訓練過程を厳格に制御し,再構成における一貫性を高める。
第2に、単一入力画像から2D先行情報を抽出し、それらを3Dポイントクラウドに投影し、拡散訓練のためのガイダンスを強化する。
我々のフレームワークは、トレーニング中に追加の制約を直接課すことから生じる潜在的なモデル学習シフトを横取りするだけでなく、3Dドメインに正確に2Dプリエントを変換する。
大規模な実験により,本手法は,合成データセットと実世界のデータセットの両方に新しいベンチマークを設定できることが判明した。
コードは提出書に含まれます。
関連論文リスト
- 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
我々は,LiDARとカメラのペアを連続的に利用して事前学習の目的を確立するための,新しいフレームワークであるSuperFlowを紹介する。
学習効率をさらに向上するため,カメラビューから抽出した知識の整合性を高めるプラグイン・アンド・プレイ・ビュー・一貫性モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-07-08T17:59:54Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
テキストから3D生成における検索に基づく品質向上のための新しいフレームワークを提案する。
我々はReDreamが幾何整合性を高めて優れた品質を示すことを示すために広範な実験を行った。
論文 参考訳(メタデータ) (2024-02-05T12:50:30Z) - UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation [101.2317840114147]
We present UniDream, a text-to-3D generation framework by integration priors。
提案手法は,(1)アルベド正規配位型多視点拡散・再構成モデルを得るための2相学習プロセス,(2)訓練された再構成・拡散モデルを用いたスコア蒸留サンプル(SDS)に基づく幾何およびアルベドテクスチャのプログレッシブ生成手順,(3)安定拡散モデルに基づく固定アルベドを保ちながらPBR生成を確定するSDSの革新的な応用,の3つからなる。
論文 参考訳(メタデータ) (2023-12-14T09:07:37Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
本稿では,3次元生成タスクの拡散先行性向上を目的とした統合フレームワークを提案する。
拡散先行と拡散モデルの訓練手順の相違を同定し、3次元生成の質を著しく損なう。
論文 参考訳(メタデータ) (2023-12-08T03:55:34Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
生成事前学習は、2次元視覚における基本モデルの性能を高めることができる。
3Dビジョンでは、トランスフォーマーベースのバックボーンの過度な信頼性と、点雲の秩序のない性質により、生成前のトレーニングのさらなる発展が制限されている。
本稿では,任意の点クラウドモデルに適用可能な3D-to-2D生成事前学習法を提案する。
論文 参考訳(メタデータ) (2023-07-27T16:07:03Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D
Generation [39.50894560861625]
3DFuseは、事前訓練された2D拡散モデルに3D認識を組み込む新しいフレームワークである。
本研究では,2次元拡散モデルを用いて,粗い3次元構造内の誤差や空間の分散を学習し,ロバストな生成を可能にするトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T14:24:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。