ITVTON: Virtual Try-On Diffusion Transformer Based on Integrated Image and Text
- URL: http://arxiv.org/abs/2501.16757v2
- Date: Sat, 15 Mar 2025 18:12:59 GMT
- Title: ITVTON: Virtual Try-On Diffusion Transformer Based on Integrated Image and Text
- Authors: Haifeng Ni, Ming Xu, Faming Fang,
- Abstract summary: We introduce ITVTON, which utilizes the Diffusion Transformer (DiT) as a generator to enhance image quality.<n>ITVTON improves garment-person interaction by stitching garment and person images along the spatial channel.<n>We constrain training to attention parameters within a single Diffusion Transformer (Single-DiT) block.
- Score: 11.85544970521423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtual try-on task, grounded in persons and garments, has produced notable advancements in the domain of diffusion models. Numerous approaches use replicated backbones or additional image encoders to extract garment features, leading to higher computational cost and a more complex network structure. In this work, we introduce ITVTON, which utilizes the Diffusion Transformer (DiT) as a generator to enhance image quality. ITVTON also improves garment-person interaction by stitching garment and person images along the spatial channel, and integrates textual descriptions from both the garment and person images to further enhance the realism of the generated visuals. This network structure is efficient, and to further reduce computational cost, we constrain training to attention parameters within a single Diffusion Transformer (Single-DiT) block. Extensive experiments demonstrate that ITVTON outperforms baseline methods both qualitatively and quantitatively, thereby establishing a new benchmark for virtual try-on tasks.Additionally, 10,257 image pairs were selected from IGPair to demonstrate that ITVTON performs effectively in realistic scenes.
Related papers
- ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On [21.938301712852226]
This paper introduces ITA-MDT, the Image-Timestep-Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON)
The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment.
arXiv Detail & Related papers (2025-03-26T10:49:44Z) - TryOffAnyone: Tiled Cloth Generation from a Dressed Person [1.4732811715354452]
High-fidelity tiled garment images are essential for personalized recommendations, outfit composition, and virtual try-on systems.<n>We propose a novel approach utilizing a fine-tuned StableDiffusion model.<n>Our method features a streamlined single-stage network design, which integrates garmentspecific masks to isolate and process target clothing items effectively.
arXiv Detail & Related papers (2024-12-11T17:41:53Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1 is a virtual dressing task that generates freely editable human images with fixed garments and optional conditions.
IMAGDressing-v1 incorporates a garment UNet that captures semantic features from CLIP and texture features from VAE.
We present a hybrid attention module, including a frozen self-attention and a trainable cross-attention, to integrate garment features from the garment UNet into a frozen denoising UNet.
arXiv Detail & Related papers (2024-07-17T16:26:30Z) - Self-Supervised Vision Transformer for Enhanced Virtual Clothes Try-On [21.422611451978863]
We introduce an innovative approach for virtual clothes try-on, utilizing a self-supervised Vision Transformer (ViT) and a diffusion model.
Our method emphasizes detail enhancement by contrasting local clothing image embeddings, generated by ViT, with their global counterparts.
The experimental results showcase substantial advancements in the realism and precision of details in virtual try-on experiences.
arXiv Detail & Related papers (2024-06-15T07:46:22Z) - AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario [50.62711489896909]
AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap.
AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.
arXiv Detail & Related papers (2024-05-28T13:33:08Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment.
We propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images.
We present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity.
arXiv Detail & Related papers (2024-03-08T08:12:18Z) - Federated Multi-View Synthesizing for Metaverse [52.59476179535153]
The metaverse is expected to provide immersive entertainment, education, and business applications.
Virtual reality (VR) transmission over wireless networks is data- and computation-intensive.
We have developed a novel multi-view synthesizing framework that can efficiently provide synthesizing, storage, and communication resources for wireless content delivery in the metaverse.
arXiv Detail & Related papers (2023-12-18T13:51:56Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
Vision Transformer (ViT) has demonstrated strong modeling capabilities and scalability, especially for recognition tasks.
We study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT)
DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency.
arXiv Detail & Related papers (2023-12-04T18:57:01Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising.
We propose a new Hybrid Attention Transformer (HAT) to activate more input pixels for better restoration.
Our HAT achieves state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-09-11T05:17:55Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
We propose a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT)
The proposed ICT can capture both global and local contexts from the latent representations.
We leverage a learnable scaling module with a sandwich ConvNeXt-based pre/post-processor to accurately extract more compact latent representation.
arXiv Detail & Related papers (2023-07-12T11:32:02Z) - C-VTON: Context-Driven Image-Based Virtual Try-On Network [1.0832844764942349]
We propose a Context-Driven Virtual Try-On Network (C-VTON) that convincingly transfers selected clothing items to the target subjects.
At the core of the C-VTON pipeline are: (i) a geometric matching procedure that efficiently aligns the target clothing with the pose of the person in the input images, and (ii) a powerful image generator that utilizes various types of contextual information when the final try-on result.
arXiv Detail & Related papers (2022-12-08T17:56:34Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
We propose a dynamic sparse attention based Transformer model to achieve fine-level matching with favorable efficiency.
The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on.
Experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details.
arXiv Detail & Related papers (2022-07-13T11:12:03Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
Vision transformers (ViT) have demonstrated impressive performance across various machine vision problems.
We systematically study this question via an extensive set of experiments and comparisons with a high-performing convolutional neural network (CNN)
We show effective features of ViTs are due to flexible receptive and dynamic fields possible via the self-attention mechanism.
arXiv Detail & Related papers (2021-05-21T17:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.