論文の概要: Beyond-Labels: Advancing Open-Vocabulary Segmentation With Vision-Language Models
- arxiv url: http://arxiv.org/abs/2501.16769v2
- Date: Wed, 29 Jan 2025 04:34:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 12:31:28.291017
- Title: Beyond-Labels: Advancing Open-Vocabulary Segmentation With Vision-Language Models
- Title(参考訳): Beyond-Labels: ビジョンランゲージモデルによるオープンボキャブラリセグメンテーションの促進
- Authors: Muhammad Atta ur Rahman,
- Abstract要約: 自己教師付き学習は、効果的に訓練された場合、多数の画像や言語処理の問題を解決することができる。
本研究は, セマンティックセグメンテーションタスクにおいて, 以前に学習した基礎モデルの簡易かつ効率的な抽出法について検討した。
本研究は,少数の画像分割データを用いて,凍結画像表現と言語概念を融合する軽量トランスフォーマーベース融合モジュールであるBeyond-Labelsを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Self-supervised learning can resolve numerous image or linguistic processing problems when effectively trained. This study investigated simple yet efficient methods for adaping previously learned foundation models for open-vocabulary semantic segmentation tasks. Our research proposed "Beyond-Labels," a lightweight transformer-based fusion module that uses a handful of image segmentation data to fuse frozen image representations with language concepts. Furthermore, we efficiently captured positional information in images using Fourier embeddings, thus improving the generalization across various image sizes. Extensive ablation tests were performed to investigate the important components of our proposed method; when tested against the common benchmark PASCAL-5i, it demonstrated superior performance despite being trained on frozen image and language characteristics.
- Abstract(参考訳): 自己教師付き学習は、効果的に訓練された場合、多数の画像や言語処理の問題を解決することができる。
本研究では,オープン語彙セマンティックセグメンテーションタスクのための学習済み基礎モデルの簡易かつ効率的な抽出法について検討した。
本研究は,少数の画像分割データを用いて,凍結画像表現と言語概念を融合する軽量トランスフォーマーベース融合モジュールであるBeyond-Labelsを提案する。
さらに、フーリエ埋め込みを用いて画像の位置情報を効率的に取得し、様々な画像サイズでの一般化を改善する。
PASCAL-5iを用いた実験では,凍結画像と言語特性を訓練したにもかかわらず,優れた性能を示した。
関連論文リスト
- ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification [52.405499816861635]
多重インスタンス学習(MIL)ベースのフレームワークは、スライド画像全体(WSI)を処理する上で主流になっている。
スライド画像全体の分類のための2次元視覚言語多言語学習(ViLa-MIL)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T13:28:46Z) - DILLEMA: Diffusion and Large Language Models for Multi-Modal Augmentation [0.13124513975412253]
本稿では,大規模言語モデルと制御条件拡散モデルを活用した視覚ニューラルネットワークのテストフレームワークを提案する。
私たちのアプローチは、キャプションモデルを用いて画像から詳細なテキスト記述に変換することから始まります。
これらの記述は、テキストから画像への拡散プロセスを通じて、新しいテスト画像を生成するために使用される。
論文 参考訳(メタデータ) (2025-02-05T16:35:42Z) - CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning [4.004641316826348]
効率的な大言語モデルとファインチューニング(CLEFT)を併用した新しい言語画像コントラスト学習手法を提案する。
複数の胸部X線およびマンモグラフィーデータセットの最先端性能を示す。
提案手法は,既存のBERTエンコーダと比較して,トレーニング可能なモデル全体のサイズを39%削減し,トレーニング可能な言語モデルを4%に削減する。
論文 参考訳(メタデータ) (2024-07-30T17:57:32Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
本稿では、画像理解に特化して自己学習アプローチを強調する自己学習 on Image (STIC)を紹介する。
まず、ラベルのない画像を用いて、画像記述の好みを自己構築する。
抽出した視覚情報に対する推論をさらに自己改善するため,既存の命令調整データのごく一部をモデルに再利用する。
論文 参考訳(メタデータ) (2024-05-30T05:53:49Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - TExplain: Explaining Learned Visual Features via Pre-trained (Frozen) Language Models [14.019349267520541]
本稿では,事前学習した画像分類器の学習特徴を解釈するために,言語モデルの能力を活用する新しい手法を提案する。
提案手法は,与えられた画像の分類器によって学習された特徴を説明するために,膨大な数の文を生成する。
提案手法は,視覚表現に対応する頻繁な単語を初めて利用し,意思決定プロセスに関する洞察を提供する。
論文 参考訳(メタデータ) (2023-09-01T20:59:46Z) - Joint Adaptive Representations for Image-Language Learning [59.40890927221377]
画像言語学習のためのレシピを提案し、より大きくて高価なものよりも優れたモデルを作成し、しばしば桁違いに大きなデータセットで訓練する。
我々の重要な発見は、適応的かつ反復的にマルチモーダルな特徴を融合させる、コンパクトな視覚と言語表現の連成学習である。
たった4000万のトレーニング例と39のGFLOPで、私たちの軽量モデルは、2~20倍以上のFLOPの最先端モデルで、さらに大きなデータセットを使用して、1B近くのトレーニング例で何倍もパフォーマンスを上げています。
論文 参考訳(メタデータ) (2023-05-31T15:02:02Z) - Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models [39.479912987123214]
自己指導型学習は、幅広い視覚的・言語的理解タスクを解く顕著な能力を示した。
Fusionerは軽量なトランスフォーマーベースの融合モジュールで、凍結した視覚表現と言語概念をペアリングする。
提案手法は,任意の視覚モデルと言語モデル,あるいはユニモーダルデータのコーパス上で事前学習したモデルに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-10-27T02:57:26Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
本稿では,CLIPから事前学習した知識を暗黙的かつ明示的に活用することで,高密度予測のための新しい枠組みを提案する。
具体的には,CLIPにおける元の画像テキストマッチング問題を画素テキストマッチング問題に変換し,画素テキストスコアマップを用いて高密度予測モデルの学習を指導する。
本手法は,任意の密集予測システムや種々の事前学習された視覚バックボーンに適用可能な,モデルに依存しない手法である。
論文 参考訳(メタデータ) (2021-12-02T18:59:32Z) - MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase
Grounding [74.33171794972688]
本稿では,詳細な視覚表現と視覚認識言語表現を活用することで,句オブジェクトの関連性をモデル化するアルゴリズムを提案する。
広く採用されているFlickr30kデータセットで実施された実験は、既存の弱教師付き手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-10-12T00:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。