DIRIGENt: End-To-End Robotic Imitation of Human Demonstrations Based on a Diffusion Model
- URL: http://arxiv.org/abs/2501.16800v1
- Date: Tue, 28 Jan 2025 09:05:03 GMT
- Title: DIRIGENt: End-To-End Robotic Imitation of Human Demonstrations Based on a Diffusion Model
- Authors: Josua Spisak, Matthias Kerzel, Stefan Wermter,
- Abstract summary: We introduce DIRIGENt, a novel end-to-end diffusion approach to generate joint values from observing human demonstrations.
We create a dataset in which humans imitate a robot and then use this collected data to train a diffusion model that enables a robot to imitate humans.
- Score: 16.26334759935617
- License:
- Abstract: There has been substantial progress in humanoid robots, with new skills continuously being taught, ranging from navigation to manipulation. While these abilities may seem impressive, the teaching methods often remain inefficient. To enhance the process of teaching robots, we propose leveraging a mechanism effectively used by humans: teaching by demonstrating. In this paper, we introduce DIRIGENt (DIrect Robotic Imitation GENeration model), a novel end-to-end diffusion approach that directly generates joint values from observing human demonstrations, enabling a robot to imitate these actions without any existing mapping between it and humans. We create a dataset in which humans imitate a robot and then use this collected data to train a diffusion model that enables a robot to imitate humans. The following three aspects are the core of our contribution. First is our novel dataset with natural pairs between human and robot poses, allowing our approach to imitate humans accurately despite the gap between their anatomies. Second, the diffusion input to our model alleviates the challenge of redundant joint configurations, limiting the search space. And finally, our end-to-end architecture from perception to action leads to an improved learning capability. Through our experimental analysis, we show that combining these three aspects allows DIRIGENt to outperform existing state-of-the-art approaches in the field of generating joint values from RGB images.
Related papers
- Learning to Transfer Human Hand Skills for Robot Manipulations [12.797862020095856]
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations.
Our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion from others.
arXiv Detail & Related papers (2025-01-07T22:33:47Z) - Visual IRL for Human-Like Robotic Manipulation [5.167226775583172]
We present a novel method for collaborative robots (cobots) to learn manipulation tasks and perform them in a human-like manner.
Our method falls under the learn-from-observation (LfO) paradigm, where robots learn to perform tasks by observing human actions.
We evaluate the performance of this approach on two different realistic manipulation tasks.
arXiv Detail & Related papers (2024-12-16T01:23:13Z) - Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training [69.54948297520612]
Learning a generalist embodied agent poses challenges, primarily stemming from the scarcity of action-labeled robotic datasets.
We introduce a novel framework to tackle these challenges, which leverages a unified discrete diffusion to combine generative pre-training on human videos and policy fine-tuning on a small number of action-labeled robot videos.
Our method generates high-fidelity future videos for planning and enhances the fine-tuned policies compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-02-22T09:48:47Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.