Enhancing Web Service Anomaly Detection via Fine-grained Multi-modal Association and Frequency Domain Analysis
- URL: http://arxiv.org/abs/2501.16875v1
- Date: Tue, 28 Jan 2025 12:00:45 GMT
- Title: Enhancing Web Service Anomaly Detection via Fine-grained Multi-modal Association and Frequency Domain Analysis
- Authors: Xixuan Yang, Xin Huang, Chiming Duan, Tong Jia, Shandong Dong, Ying Li, Gang Huang,
- Abstract summary: Anomaly detection is crucial for ensuring the stability and reliability of web service systems.
Existing anomaly detection methods use logs and metrics to detect anomalies.
We propose a novel anomaly detection method named FFAD to address these two issues.
- Score: 8.860339665670255
- License:
- Abstract: Anomaly detection is crucial for ensuring the stability and reliability of web service systems. Logs and metrics contain multiple information that can reflect the system's operational state and potential anomalies. Thus, existing anomaly detection methods use logs and metrics to detect web service systems' anomalies through data fusion approaches. They associate logs and metrics using coarse-grained time window alignment and capture the normal patterns of system operation through reconstruction. However, these methods have two issues that limit their performance in anomaly detection. First, due to asynchrony between logs and metrics, coarse-grained time window alignment cannot achieve a precise association between the two modalities. Second, reconstruction-based methods suffer from severe overgeneralization problems, resulting in anomalies being accurately reconstructed. In this paper, we propose a novel anomaly detection method named FFAD to address these two issues. On the one hand, FFAD employs graph-based alignment to mine and extract associations between the modalities from the constructed log-metric relation graph, achieving precise associations between logs and metrics. On the other hand, we improve the model's fit to normal data distributions through Fourier Frequency Focus, thereby enhancing the effectiveness of anomaly detection. We validated the effectiveness of our model on two real-world industrial datasets and one open-source dataset. The results show that our method achieves an average anomaly detection F1-score of 93.6%, representing an 8.8% improvement over previous state-of-the-art methods.
Related papers
- Cross-Modal Learning for Anomaly Detection in Complex Industrial Process: Methodology and Benchmark [19.376814754500625]
Anomaly detection in complex industrial processes plays a pivotal role in ensuring efficient, stable, and secure operation.
This paper proposes a cross-modal Transformer to facilitate anomaly detection by exploring the correlation between visual features (video) and process variables (current) in the context of the fused magnesium smelting process.
We present a pioneering cross-modal benchmark of the fused magnesium smelting process, featuring synchronously acquired video and current data for over 2.2 million samples.
arXiv Detail & Related papers (2024-06-13T11:40:06Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Robust Multimodal Failure Detection for Microservice Systems [32.25907616511765]
AnoFusion is an unsupervised failure detection approach for microservice systems.
It learns the correlation of the heterogeneous multimodal data and integrates a Graph Attention Network (GAT) and Gated Recurrent Unit (GRU)
It achieves the F1-score of 0.857 and 0.922, respectively, outperforming state-of-the-art failure detection approaches.
arXiv Detail & Related papers (2023-05-30T12:39:42Z) - Efficient pattern-based anomaly detection in a network of multivariate
devices [0.17188280334580192]
We propose a scalable approach to detect anomalies using a two-step approach.
First, we recover relations between entities in the network, since relations are often dynamic in nature and caused by an unknown underlying process.
Next, we report anomalies based on an embedding of sequential patterns.
arXiv Detail & Related papers (2023-05-07T16:05:30Z) - Heterogeneous Anomaly Detection for Software Systems via Semi-supervised
Cross-modal Attention [29.654681594903114]
We propose Hades, the first end-to-end semi-supervised approach to identify system anomalies based on heterogeneous data.
Our approach employs a hierarchical architecture to learn a global representation of the system status by fusing log semantics and metric patterns.
We evaluate Hades extensively on large-scale simulated data and datasets from Huawei Cloud.
arXiv Detail & Related papers (2023-02-14T09:02:11Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
Anomaly detection becomes increasingly important for the dependability and serviceability of IT services.
Existing unsupervised methods need anomaly examples to obtain a suitable decision boundary.
We develop A2Log, which is an unsupervised anomaly detection method consisting of two steps: Anomaly scoring and anomaly decision.
arXiv Detail & Related papers (2021-09-20T13:40:21Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.