Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks
- URL: http://arxiv.org/abs/2501.16944v1
- Date: Tue, 28 Jan 2025 13:37:44 GMT
- Title: Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks
- Authors: Fabian Fumagalli, Maximilian Muschalik, Paolo Frazzetto, Janine Strotherm, Luca Hermes, Alessandro Sperduti, Eyke Hüllermeier, Barbara Hammer,
- Abstract summary: Shapley Interactions (SIs) quantify node contributions and interactions among multiple nodes.
By exploiting the GNN architecture, we show that the structure of interactions in node embeddings are preserved for graph prediction.
We introduce GraphSHAP-IQ, an efficient approach to compute any-order SIs exactly.
- Score: 53.10674067060148
- License:
- Abstract: Albeit the ubiquitous use of Graph Neural Networks (GNNs) in machine learning (ML) prediction tasks involving graph-structured data, their interpretability remains challenging. In explainable artificial intelligence (XAI), the Shapley Value (SV) is the predominant method to quantify contributions of individual features to a ML model's output. Addressing the limitations of SVs in complex prediction models, Shapley Interactions (SIs) extend the SV to groups of features. In this work, we explain single graph predictions of GNNs with SIs that quantify node contributions and interactions among multiple nodes. By exploiting the GNN architecture, we show that the structure of interactions in node embeddings are preserved for graph prediction. As a result, the exponential complexity of SIs depends only on the receptive fields, i.e. the message-passing ranges determined by the connectivity of the graph and the number of convolutional layers. Based on our theoretical results, we introduce GraphSHAP-IQ, an efficient approach to compute any-order SIs exactly. GraphSHAP-IQ is applicable to popular message passing techniques in conjunction with a linear global pooling and output layer. We showcase that GraphSHAP-IQ substantially reduces the exponential complexity of computing exact SIs on multiple benchmark datasets. Beyond exact computation, we evaluate GraphSHAP-IQ's approximation of SIs on popular GNN architectures and compare with existing baselines. Lastly, we visualize SIs of real-world water distribution networks and molecule structures using a SI-Graph.
Related papers
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Connectivity Optimized Nested Graph Networks for Crystal Structures [1.1470070927586016]
Graph neural networks (GNNs) have been applied to a large variety of applications in materials science and chemistry.
We show that our suggested models systematically improve state-of-the-art results across all tasks within the MatBench benchmark.
arXiv Detail & Related papers (2023-02-27T19:26:48Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
arXiv Detail & Related papers (2020-12-31T21:33:17Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.