Quantum Phase Transition of Non-Hermitian Systems using Variational Quantum Techniques
- URL: http://arxiv.org/abs/2501.17003v1
- Date: Tue, 28 Jan 2025 14:58:50 GMT
- Title: Quantum Phase Transition of Non-Hermitian Systems using Variational Quantum Techniques
- Authors: James Hancock, Matthew J. Craven, Craig McNeile, Davide Vadacchino,
- Abstract summary: We investigate the use of a quantum algorithm to find the eigenvalues and eigenvectors of non-Hermitian Hamiltonians.
The systems studied are the transverse Ising model with both a purely real and a purely complex transverse field.
- Score: 0.0
- License:
- Abstract: The motivation for studying non-Hermitian systems and the role of $\mathcal{PT}$-symmetry is discussed. We investigate the use of a quantum algorithm to find the eigenvalues and eigenvectors of non-Hermitian Hamiltonians, with applications to quantum phase transitions. We use a recently proposed variational algorithm. The systems studied are the transverse Ising model with both a purely real and a purely complex transverse field.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Adiabatic Transformations in Dissipative and Non-Hermitian Phase Transitions [0.4915744683251149]
We propose a novel generalization of the quantum geometric tensor, which offers a universal approach to studying phase transitions in non-Hermitian quantum systems.
Our generalization is based on the concept of the generator of adiabatic transformations and can be applied to systems described by either a Liouvillian superoperator or by an effective non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2024-04-18T17:05:08Z) - Non-Hermiticity in quantum nonlinear optics through symplectic
transformations [0.0]
We show that second-quantised Hermitian Hamiltonians on the Fock space give rise to non-Hermitian effective Hamiltonians.
We create a quantum optical scheme for simulating arbitrary non-unitary processes by way of singular value decomposition.
arXiv Detail & Related papers (2023-10-06T18:41:46Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Variational dynamics as a ground-state problem on a quantum computer [0.0]
We propose a variational quantum algorithm to study the real time dynamics of quantum systems as a ground-state problem.
The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits.
arXiv Detail & Related papers (2022-04-07T13:58:14Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - The quantum phase transitions of dimer chain driven by an imaginary ac
field [0.0]
A topologically equivalent tight binding model is proposed to study the quantum phase transitions of dimer chain driven by an imaginary ac field.
The approach has the potential applications to investigate the topological states of matter driven by the complex external parameters.
arXiv Detail & Related papers (2020-09-08T09:07:45Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.