Variational dynamics as a ground-state problem on a quantum computer
- URL: http://arxiv.org/abs/2204.03454v2
- Date: Wed, 15 Feb 2023 14:36:00 GMT
- Title: Variational dynamics as a ground-state problem on a quantum computer
- Authors: Stefano Barison, Filippo Vicentini, Ignacio Cirac, Giuseppe Carleo
- Abstract summary: We propose a variational quantum algorithm to study the real time dynamics of quantum systems as a ground-state problem.
The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a variational quantum algorithm to study the real time dynamics of
quantum systems as a ground-state problem. The method is based on the original
proposal of Feynman and Kitaev to encode time into a register of auxiliary
qubits. We prepare the Feynman-Kitaev Hamiltonian acting on the composed system
as a qubit operator and find an approximate ground state using the Variational
Quantum Eigensolver. We apply the algorithm to the study of the dynamics of a
transverse field Ising chain with an increasing number of spins and time steps,
proving a favorable scaling in terms of the number of two qubit gates. Through
numerical experiments, we investigate its robustness against noise, showing
that the method can be use to evaluate dynamical properties of quantum systems
and detect the presence of dynamical quantum phase transitions by measuring
Loschmidt echoes.
Related papers
- Reaction dynamics with qubit-efficient momentum-space mapping [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We consider a qubit-efficient mapping on a lattice, which can be efficiently performed using momentum-space basis states.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Quantum kernels for classifying dynamical singularities in a multiqubit system [0.0]
We use quantum Kernels to classify dynamical singularities of the rate function for a multiqubit system.
Our results show that this quantum dynamical critical problem can be efficiently solved using physically inspiring quantum Kernels.
arXiv Detail & Related papers (2023-10-06T15:01:37Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.