Revisit Mixture Models for Multi-Agent Simulation: Experimental Study within a Unified Framework
- URL: http://arxiv.org/abs/2501.17015v1
- Date: Tue, 28 Jan 2025 15:26:25 GMT
- Title: Revisit Mixture Models for Multi-Agent Simulation: Experimental Study within a Unified Framework
- Authors: Longzhong Lin, Xuewu Lin, Kechun Xu, Haojian Lu, Lichao Huang, Rong Xiong, Yue Wang,
- Abstract summary: In multi-agent simulation, the primary challenges include behavioral multimodality and closed-loop distributional shifts.
In this study, we revisit mixture models for generating multimodal agent behaviors, which can cover the mainstream methods.
We introduce a closed-loop sample generation approach tailored for mixture models to mitigate distributional shifts.
- Score: 19.558523263211942
- License:
- Abstract: Simulation plays a crucial role in assessing autonomous driving systems, where the generation of realistic multi-agent behaviors is a key aspect. In multi-agent simulation, the primary challenges include behavioral multimodality and closed-loop distributional shifts. In this study, we revisit mixture models for generating multimodal agent behaviors, which can cover the mainstream methods including continuous mixture models and GPT-like discrete models. Furthermore, we introduce a closed-loop sample generation approach tailored for mixture models to mitigate distributional shifts. Within the unified mixture model~(UniMM) framework, we recognize critical configurations from both model and data perspectives. We conduct a systematic examination of various model configurations, including positive component matching, continuous regression, prediction horizon, and the number of components. Moreover, our investigation into the data configuration highlights the pivotal role of closed-loop samples in achieving realistic simulations. To extend the benefits of closed-loop samples across a broader range of mixture models, we further address the shortcut learning and off-policy learning issues. Leveraging insights from our exploration, the distinct variants proposed within the UniMM framework, including discrete, anchor-free, and anchor-based models, all achieve state-of-the-art performance on the WOSAC benchmark.
Related papers
- Bridging the inference gap in Mutimodal Variational Autoencoders [6.246098300155483]
Multimodal Variational Autoencoders offer versatile and scalable methods for generating unobserved modalities from observed ones.
Recent models using mixturesof-experts aggregation suffer from theoretically grounded limitations that restrict their generation quality on complex datasets.
We propose a novel interpretable model able to learn both joint and conditional distributions without introducing mixture aggregation.
arXiv Detail & Related papers (2025-02-06T10:43:55Z) - [MASK] is All You Need [28.90875822599164]
We propose using discrete-state models to connect Masked Generative and Non-autoregressive Diffusion models.
By leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models.
arXiv Detail & Related papers (2024-12-09T18:59:56Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
We focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks.
We propose Sample-specific Ensemble of Source Models (SESoM)
SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs.
arXiv Detail & Related papers (2022-10-23T01:33:16Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.