Value Retrieval with Arbitrary Queries for Form-like Documents
- URL: http://arxiv.org/abs/2112.07820v1
- Date: Wed, 15 Dec 2021 01:12:02 GMT
- Title: Value Retrieval with Arbitrary Queries for Form-like Documents
- Authors: Mingfei Gao, Le Xue, Chetan Ramaiah, Chen Xing, Ran Xu, Caiming Xiong
- Abstract summary: We propose value retrieval with arbitrary queries for form-like documents.
Our method predicts target value for an arbitrary query based on the understanding of layout and semantics of a form.
We propose a simple document language modeling (simpleDLM) strategy to improve document understanding on large-scale model pre-training.
- Score: 50.5532781148902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose value retrieval with arbitrary queries for form-like documents to
reduce human effort of processing forms. Unlike previous methods that only
address a fixed set of field items, our method predicts target value for an
arbitrary query based on the understanding of layout and semantics of a form.
To further boost model performance, we propose a simple document language
modeling (simpleDLM) strategy to improve document understanding on large-scale
model pre-training. Experimental results show that our method outperforms our
baselines significantly and the simpleDLM further improves our performance on
value retrieval by around 17\% F1 score compared with the state-of-the-art
pre-training method. Code will be made publicly available.
Related papers
- Quam: Adaptive Retrieval through Query Affinity Modelling [15.3583908068962]
Building relevance models to rank documents based on user information needs is a central task in information retrieval and the NLP community.
We propose a unifying view of the nascent area of adaptive retrieval by proposing, Quam.
Our proposed approach, Quam improves the recall performance by up to 26% over the standard re-ranking baselines.
arXiv Detail & Related papers (2024-10-26T22:52:12Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
arXiv Detail & Related papers (2024-04-29T04:51:30Z) - Document-Level In-Context Few-Shot Relation Extraction via Pre-Trained Language Models [29.94694305204144]
We present a novel framework for document-level in-context few-shot relation extraction.
We evaluate our framework using DocRED, the largest publicly available dataset for document-level relation extraction.
arXiv Detail & Related papers (2023-10-17T09:10:27Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
We present UDoc, a new unified pretraining framework for document understanding.
UDoc is designed to support most document understanding tasks, extending the Transformer to take multimodal embeddings as input.
An important feature of UDoc is that it learns a generic representation by making use of three self-supervised losses.
arXiv Detail & Related papers (2022-04-22T21:47:04Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Document-Level Text Simplification: Dataset, Criteria and Baseline [75.58761130635824]
We define and investigate a new task of document-level text simplification.
Based on Wikipedia dumps, we first construct a large-scale dataset named D-Wikipedia.
We propose a new automatic evaluation metric called D-SARI that is more suitable for the document-level simplification task.
arXiv Detail & Related papers (2021-10-11T08:15:31Z) - A Proposed Conceptual Framework for a Representational Approach to
Information Retrieval [42.67826268399347]
This paper outlines a conceptual framework for understanding recent developments in information retrieval and natural language processing.
I propose a representational approach that breaks the core text retrieval problem into a logical scoring model and a physical retrieval model.
arXiv Detail & Related papers (2021-10-04T15:57:02Z) - Improving Document Representations by Generating Pseudo Query Embeddings
for Dense Retrieval [11.465218502487959]
We design a method to mimic the queries on each of the documents by an iterative clustering process.
We also optimize the matching function with a two-step score calculation procedure.
Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results.
arXiv Detail & Related papers (2021-05-08T05:28:24Z) - Pre-training Tasks for Embedding-based Large-scale Retrieval [68.01167604281578]
We consider the large-scale query-document retrieval problem.
Given a query (e.g., a question), return the set of relevant documents from a large document corpus.
We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks.
arXiv Detail & Related papers (2020-02-10T16:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.